August 17 Math 2306 sec. 56 Fall 2017

Section 1: Concepts and Terminology

Recall that a Differential Equation is an equation containing the derivative(s) of one or more dependent variables, with respect to one or more indendent variables.

For the general $n^{\text {th }}$ order ODE $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0$
Definition: A function ϕ defined on an interval $/$ and possessing at least n continuous derivatives on I is a solution of (*) on I if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Definition: An implicit solution of $\left(^{*}\right)$ is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

Example
Show that for any choice of constants c_{1} and $c_{2}, y=c_{1} x+\frac{c_{2}}{x}$ is a solution of the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

$$
\begin{aligned}
& y=c_{1} x+c_{2} x^{-1} \\
& y^{\prime}=c_{1}-c_{2} x^{-2} \\
& y^{\prime \prime}=2 c_{2} x^{-3} \\
& \quad x^{2} y^{\prime \prime}+x y^{\prime}-y= \\
& x^{2}\left(2 c_{2} x^{-3}\right)+x\left(c_{1}-c_{2} x^{-2}\right)-\left(c_{1} x+c_{2} x^{-1}\right)=
\end{aligned}
$$

$$
\begin{gathered}
2 c_{2} x^{-1}+c_{1} x-c_{2} x^{-1}-c_{1} x-c_{2} x^{-1}= \\
c_{2} x^{-1}(2-1-1)+c_{1} x(1-1)= \\
c_{2} x^{-1}(0)+c_{1} x(0)=0
\end{gathered}
$$ required.

S. $y=c_{1} x+\frac{c_{2}}{x}$ solves the ODE for any choice of C_{1} and C_{2}.

Some Terms

- A parameter is an unspecified constant such as c_{1} and c_{2} in the last example.
- A family of solutions is a collection of solution functions that only differ by a parameter.
- An n-parameter family of solutions is one containing n parameters (e.g. $c_{1} x+\frac{c_{2}}{x}$ is a 2 parameter family).
- A particular solution is one with no arbitrary constants in it.
- The trivial solution is the simple constant function $y=0$.
- An integral curve is the graph of one solution (perhaps from a family).

Section 2: Initial Value Problems

An initial value problem consists of an ODE with additional conditions.

Solve the equation ${ }^{1}$

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP).

[^0]First order case:

$$
\begin{aligned}
& \frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \\
& \text { i }_{\text {order }}^{s+} \text { ODE }+\int_{\text {one iniride }}^{\text {condition }}
\end{aligned}
$$

Second order case:

$$
2^{2 \cdot \lambda} \text { order opt }^{2}+\text { initio }^{<} \text {conditions }
$$

$$
\frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

If y is the position of a moving particle The ODE gives acceleration $y\left(x_{0}\right)=$ initio position, $y^{\prime}\left(x_{0}\right)$ = initide velocity

Example
Given that $y=c_{1} x+\frac{c_{2}}{x}$ is a 2-parameter family of solutions of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0, \quad y(1)=1, \quad y^{\prime}(1)=3
$$

we dread, know that $y=c_{1} x+\frac{c_{2}}{x}$, we reed to impose the conditions $y(1)=1$ and $y^{\prime}(1)=3$.

$$
\begin{array}{ll}
y=c_{1} x+\frac{c_{2}}{x} & y(1)=c_{1} 1+\frac{c_{2}}{1}=c_{1}+c_{2}=1 \\
y^{\prime}=c_{1}-\frac{c_{2}}{x^{2}} & y^{\prime}(1)=c_{1}-\frac{c_{2}}{1^{2}}=\underbrace{c_{1}-c_{2}=3}_{\text {2 eqns }}
\end{array}
$$

$$
c_{1}+c_{2}=1
$$

add

$$
\begin{aligned}
& c_{1}-c_{2}=3 \\
& 2 c_{1}=4 \Rightarrow c_{1}=2 \\
& c_{2}=1-c_{1}=1-2=-1
\end{aligned}
$$

The solution to the IVP is

$$
y=2 x-\frac{1}{x}
$$

Graphical Interpretation

Figure: Each curve solves $y^{\prime}+2 x y=0, y(0)=y_{0}$. Each colored curve corresponds to a different value of y_{0}

Example
Part 1
Show that for any constant c the relation $x^{2}+y^{2}=c$ is an implicit solution of the ODE

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

$$
\begin{aligned}
& \text { Using implicit Diff: } 2 x+2 y \frac{d y}{d x}=0 \\
& \begin{aligned}
2 y \frac{d y}{d x} & =-2 x \Rightarrow \frac{d y}{d x}=\frac{-2 x}{2 y} \\
& \Rightarrow \frac{d y}{d x}=\frac{-x}{y} \text { as expected }
\end{aligned}
\end{aligned}
$$

Example
Part 2
Use the preceding results to find an explicit solution of the IVP

$$
\frac{d y}{d x}=-\frac{x}{y}, \quad y(0)=-2
$$

we know the solutions are defined by

$$
x^{2}+y^{2}=c
$$

using the condition $y(0)=-z$

$$
0^{2}+(-2)^{2}=c \Rightarrow c=4
$$

$x^{2}+y^{2}=4$ solves the IVP implicitly.

This defines 2 functions

$$
y=\sqrt{4-x^{2}} \quad \text { or } \quad y=-\sqrt{4-x^{2}}
$$

Since $y(0)=-2$, the explicit solution is

$$
y=-\sqrt{4-x^{2}}
$$

Example
$x=c_{1} \cos (2 t)+c_{2} \sin (2 t)$ is a 2-parameter family of solutions of the ODE $x^{\prime \prime}+4 x=0$. Find a solution of the IVP

$$
x^{\prime \prime}+4 x=0, \quad x\left(\frac{\pi}{2}\right)=-1, \quad x^{\prime}\left(\frac{\pi}{2}\right)=4
$$

$$
\begin{aligned}
& x=c_{1} \cos (2 t)+c_{2} \sin (2 t) \\
& x^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t) \\
& x\left(\frac{\pi}{2}\right)=c_{1} \cos \left(2 \cdot \frac{\pi}{2}\right)+c_{2} \sin \left(2 \cdot \frac{\pi}{2}\right)=-c_{1}=-1 \\
& c_{1}=1
\end{aligned}
$$

$$
\begin{gathered}
x^{\prime}\left(\frac{\pi}{2}\right)=-2 c_{1} \sin (2 \cdot \pi / 2)+2 c_{2} \cos \left(2 \cdot \frac{\pi}{2}\right)=-2 c_{2}=4 \\
c_{2}=-2
\end{gathered}
$$

The solution to the IVP is

$$
x=\cos (2 t)-2 \sin (2 t)
$$

Existence and Uniqueness

Two important questions we can always pose (and sometimes answer) are
(1) Does an IVP have a solution? (existence) and
(2) If it does, is there just one? (uniqueness)

Hopefully it's obvious that we can't solve $\left(\frac{d y}{d x}\right)^{2}+1=-y^{2}$.

Uniqueness
Consider the IVP

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Verify that $y=\frac{x^{4}}{16}$ is a solution of the IVP. And find a second solution of the IVP by clever guessing.

Initio cons. $y(0)=0$

$$
y(0)=\frac{0^{4}}{16}=0 \quad y_{\substack{0 \\ \text { solves } \\ \text { the }}} I C
$$

How about the ODE:

$$
\frac{d y}{d x}=\frac{4 x^{3}}{16}=\frac{x^{3}}{4}, \quad \sqrt{y}=\sqrt{\frac{x^{4}}{16}}=\frac{x^{2}}{4}
$$

So $\frac{d y}{d x}=\frac{x^{3}}{4}=x\left(\frac{x^{2}}{4}\right)=x \sqrt{y}$ as expected

Indeed $y=\frac{x^{4}}{16}$ solves the IVP

$$
\frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0
$$

Maybe there's a constant solution $y=c$.

$$
y=0 \text { works }
$$

Not $y(0)=0$
If $y=0, y^{\prime}=0$ so $y^{\prime}=0=x \sqrt{0}=x \sqrt{y}$

Section 3: Separation of Variables
The simplest type of equation we could encounter would be of the form

$$
\frac{d y}{d x}=g(x)
$$

For example, solve the ODE

$$
\begin{array}{rlr}
\frac{d y}{d x}=4 e^{2 x}+1 . \quad y & =\int\left(4 e^{2 x}+1\right) d x \quad & \quad \int_{e^{a x} d x}^{*} \\
& =\frac{4}{2} e^{2 x}+x+C \quad & =\frac{1}{a} e^{a x}+C \\
y & =2 e^{2 x}+x+C \quad \text { for } a \neq 0
\end{array} \quad
$$

Separable Equations

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

Determine which (if any) of the following are separable.
(a) $\frac{d y}{d x}=x^{3} y \quad$ yes separable with $g(x)=x^{3}$ and $h(y)=y$
(b) $\frac{d y}{d x}=2 x+y \quad$ This is not separable it cont be written as

$$
g(x) h(y)
$$

[^0]: ${ }^{1}$ on some interval $/$ containing x_{0}.

