August 17 Math 3260 sec. 58 Fall 2017

Section 1.2: Row Reduction and Echelon Forms

Recall: If two matrices are row equivalent, then the linear systems for which they are the augmented matrices are equivalent.

E.g. these are row equivalent

2	2	11	3	4]
3	2	14	4	2
1	1	6	1	2

[1]	0	0	4	_2]
0	1	0	3	4
0	0	1	4 3 1	-2 4 0

イロト イヨト イヨト イヨト

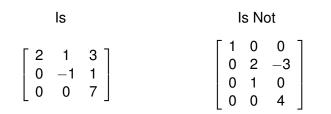
Echelon Forms

August 17, 2017

2/81

Definition: A matrix is in **echelon form** (a.k.a. **row echelon form**) if the following properties hold

- i Any row of all zeros are at the bottom.
- ii The first nonzero number (called the *leading entry*) in a row is to the right of the first nonzero number in all rows above it.
- iii All entries below a leading entry are zeros.



Reduced Echelon Form

rret

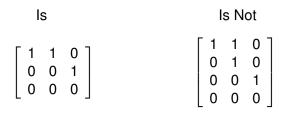
< ロ > < 同 > < 回 > < 回 >

August 17, 2017

3/81

Definition: A matrix is in **reduced echelon form** (a.k.a. **reduced row echelon form**) if it is in echelon form and the following additional properties hold

- iv The leading entry of each row is 1 (called a *leading* 1), and
- v each leading 1 is the only nonzero entry in its column.



Elementary Row Operations

We defined row equivalence via the three elementary row operations. We'll use the following convenient notation:

Swap rows *i* and *j*:

$$Ri \leftrightarrow Rj$$

Scale row *i* by *k*:

kRi
ightarrow Ri

Replace row j with the sum of itself and k times row i:

$$kRi + Rj \rightarrow Rj$$

August 17, 2017

4/81

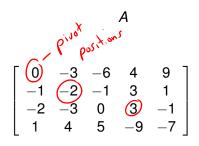
We will obtain row echelon forms (ref) and reduced row echelon forms (rref) using these row operations.

Theorem: The reduced row echelon form of a matrix is unique.

This allows the following unambiguous definition:

Definition: A **pivot position** in a matrix *A* is a location that corresponds to a leading 1 in the reduced echelon form of *A*. A **pivot column** is a column of *A* that contains a pivot position.

Identify the pivot position and columns given...



rref of A ('s

$$guad mS$$

 $\begin{pmatrix} 1 & 0 & -3 & 0 & 5 \\ 0 & 1 & 2 & 0 & -3 \\ 0 & 0 & 0 & (1) & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ P^{(1)} = 0 \\ columnary$

< □ > < □ > < □ > < □ >

August 17, 2017 6 / 81

To obtain an echelon form, we work from left to right beginning with the top row working downward.

$$\begin{bmatrix} 0 & 3 & -6 & 4 & 6 \\ 3 & -7 & 8 & 8 & -5 \\ 3 & -9 & 12 & 6 & -9 \end{bmatrix} (R_1 \leftrightarrow R_3) \ \begin{array}{c} R_1 \leftrightarrow R_3 \\ \hline 3 & -9 & 12 & 6 & -9 \\ 3 & -7 & 8 & 8 & -5 \\ 0 & 3 & -6 & 4 & 6 \\ \end{bmatrix}$$

Step 1: The left most column is a pivot column. The top position is a pivot position. Get a nonzero entry in the top left position by row swapping if needed.

$$\begin{bmatrix} 3 & -9 & 12 & 6 & -9 \\ 3 & -7 & 8 & 8 & -5 \\ 0 & 3 & -6 & 4 & 6 \end{bmatrix} - R_1 + R_2 \to R_2$$
$$\begin{bmatrix} 3 & -9 & 12 & 6 & -9 \\ 6 & 2 & -9 & 2 & 9 \\ 0 & 3 & -6 & 4 & 6 \end{bmatrix}$$

Step 2: Use row operations to get zeros in all entries below the pivot.

August 17, 2017 8 / 81

<ロト <回 > < 回 > < 回 > < 回 > … 回

$$\begin{bmatrix} 3 & -9 & 12 & 6 & -9 \\ 0 & 2 & -4 & 2 & 4 \\ 0 & 3 & -6 & 4 & 6 \end{bmatrix} \qquad \begin{bmatrix} 3 & -9 & 12 & 6 & -9 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 3 & -6 & 4 & 6 \end{bmatrix} \qquad \begin{bmatrix} 3 & -9 & 12 & 6 & -9 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 3 & -6 & 4 & 6 \end{bmatrix} \qquad \begin{bmatrix} -3k_2 + k_3 \rightarrow k_3 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{k_1, k_2} K_3$$

Step 3: Ignore the row with a pivot, all rows above it, the pivot column, and all columns to its left, and repeat steps 1-2.

To obtain a reduced row echelon form:

Step 4: Starting with the right most pivot and working up and to the left, use row operations to get a zero in each position above a pivot. Scale to make each pivot a 1.

1 -

$$\begin{bmatrix} 3 & -9 & 12 & 6 & -9 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -3 & 4 & 2 & -3 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -3 & 4 & 2 & -3 \\ 0 & 1 & -2 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} -R_3 + R_2 \rightarrow R_2 -2R_3 + R_1 \rightarrow R_1$$

August 17, 2017 11 / 81

イロン イ団と イヨン 一

$$\begin{bmatrix} 1 & -3 & 4 & 0 & -3 \\ 0 & 1 & -2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$1 -3 & 4 & 0 -3 & 3R_2 + R_1 \rightarrow R_1$$

$$0 & 3 - 6 & 0 & 6 & \\ \begin{bmatrix} 1 & 0 & -2 & 0 & 3 \\ 0 & 1 & -2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Thus is the creft.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へで August 17, 2017 12 / 81

Complete Row Reduction isn't needed to find Pivots

Find the pivot positions and pivot columns of the matrix

This matrix has an ref and rref

$$\begin{bmatrix} 1 & 1 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \text{ respectively.}$$

August 17, 2017 14 / 81

Echelon Form & Solving a System

Remark: The row operations used to get an rref correspond to an **equivalent** system!

Consider the reduced echelon matrix, and describe the solution set for the associated system of equations (the one who'd have this as its augmented matrix).

 $\begin{bmatrix} 1 & 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & -2 & 4 \\ 0 & 0 & 0 & 1 & 0 & -9 \end{bmatrix} \qquad \begin{array}{c} X_1 + Y_2 & = 3 \\ X_2 & -2X_3 = 4 \\ X_4 & = -9 \end{array}$

The solution set is given by

イロト 不得 トイヨト イヨト ヨー ろくの

August 17, 2017 15 / 81

August 17, 2017 16 / 81

・ロト・西ト・モン・モー シック

Consistent versus Inconsistent Systems

Consider each rref. Determine if the underlying system (the one with this as its augmented matrix) is consistent or inconsistent.

< □ → < □ → < ■ → < ■ → < ■ → < ■ → へ (*) August 17, 2017 18 / 81

An Existence and Uniqueness Theorem

Theorem: A linear system is consistent if and only if the right most column of the augmented matrix is **NOT** a pivot column. That is, if and only if each echelon form **DOES NOT** have a row of the form

 $[0 \ 0 \ \cdots \ 0 \ b]$, for some nonzero b.

If a linear system is consistent, then it has

(i) exactly one solution if there are no free variables, or

(ii) infinitely many solutions if there is at least one free variable.

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a **column vector** or simply a **vector**.

e.s.
$$\begin{bmatrix} 1\\3\\-2\\4 \end{bmatrix}$$
 In print vectors are in bold face.
In hand writing we use an arrow
over the variable to denote
a vector e.g. is or V

The set of vectors of the form $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ with x_1 and x_2 any real numbers is denoted by \mathbb{R}^2 (read "R two"). It's the set of all real ordered pairs.

Geometry

Each vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ corresponds to a point in the Cartesian plane. We can equate them with ordered pairs written in the traditional format $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = (x_1, x_2)$. This is **not to be confused with a row matrix.**

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \neq \left[x_1 \ x_2\right]$$

・ロト・日本・モト・モー シック

August 17, 2017 21 / 81

We can identify vectors with points or with directed line segments emanating from the origin (little arrows).

Geometry

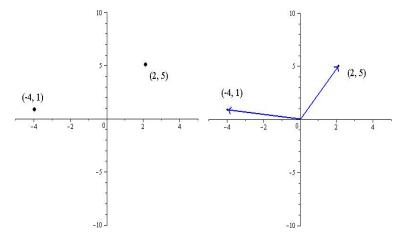


Figure: Vectors characterized as points, and vectors characterized as directed line segments.

August 17, 2017

22/81

Algebraic Operations Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, and *c* be a scalar¹. Scalar Multiplication: The scalar multiple of \mathbf{u}

$$c\mathbf{u} = \left[egin{array}{c} cu_1 \ cu_2 \end{array}
ight]$$

Vector Addition: The sum of vectors u and v

$$\mathbf{u} + \mathbf{v} = \left[\begin{array}{c} u_1 + v_1 \\ u_2 + v_2 \end{array} \right]$$

Vector Equivalence: Equality of vectors is defined by

$$\mathbf{u} = \mathbf{v}$$
 if and only if $u_1 = v_1$ and $u_2 = v_2$.

¹A **scalar** is an element of the set from which u_1 and u_2 come. For our purposes, a scalar is a *real* number.

Examples

$$\mathbf{u} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ 7 \end{bmatrix}, \text{ and } \mathbf{w} = \begin{bmatrix} -3 \\ \frac{3}{2} \end{bmatrix}$$

Evaluate
(a) $-2\mathbf{u} = -2\begin{bmatrix} \mathbf{u} \\ -\mathbf{z} \end{bmatrix}^{\frac{1}{2}} \begin{bmatrix} -2 \cdot \mathbf{u} \\ -\mathbf{z} \cdot (-2) \end{bmatrix}^{\frac{1}{2}} \begin{bmatrix} -9 \\ \mathbf{u} \end{bmatrix}^{\frac{1}{2}} \begin{bmatrix} -11 \\ 25 \end{bmatrix}$
Is it true that $\mathbf{w} = -\frac{3}{4}\mathbf{u}$?
 $\mathbf{w} \end{bmatrix}$

August 17, 2017 24 / 81

・ロン ・御と ・ヨン ・ヨン 三日

Geometry of Algebra with Vectors

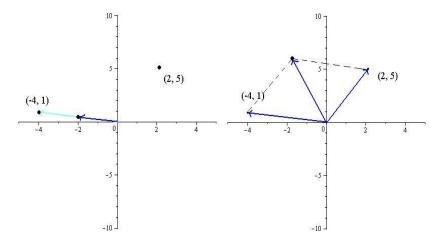


Figure: Left: $\frac{1}{2}(-4, 1) = (-2, 1/2)$. Right: (-4, 1) + (2, 5) = (-2, 6)