August 19 Math 1190 sec. 51 Fall 2016

Section 1.1: Limits of Functions Using Numerical and Graphical Techniques

In *Calculus*, we consider the way in which quantities **change**. In particular, if we have a function representing some process (motion of a particle, growth of a population, spread of a disease), we can analyze it to determine the nature of how it changes. We can also use knowledge of change to reconstruct a function describing a process.

Central to analyzing change and reconstructing functions is notion of a **limit**.

The Tangent Line Problem

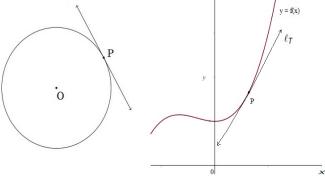


Figure: We begin by considering the tangent line problem. For a circle, a tangent line at point *P* is defined as the line having exactly one point in common with the circle. For the graph of a function y = f(x), we define the tangent line at the point *P* has the line that shares the point *P* and has the same *slope* as the graph of *f* at *P*.

Slope of the Tangent Line

Question: What is meant by the *slope* of the function at the point *P*?

For now, let's assume that the graph if reasonably *nice* like the one in the figure. Let *P* be at x = c and y = f(c)

i.e.
$$P = (c, f(c))$$
.

To find a slope, we require two points. So let's take another point Q on the graph of f. In term of coordinates

$$Q=(x,f(x)).$$

The line through the two points P and Q on the graph is called a **Secant Line**. We will denote the slopes of the tangent line and the secant line as

$$m_{tan}$$
 and m_{sec} .

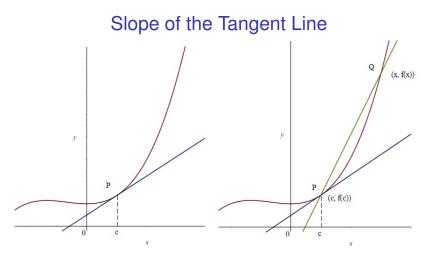
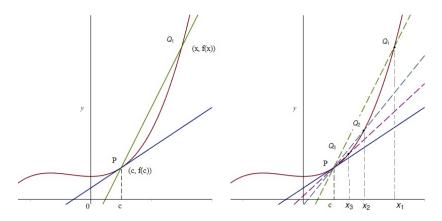


Figure: The slope of the line through *P* and *Q* (rise over run) is

$$m_{sec} = \frac{f(x) - f(c)}{x - c}$$

Slope of the Tangent Line

We consider a sequence of points $Q_1 = (x_1, f(x_1))$, $Q_2 = (x_2, f(x_2))$, and so forth in such a way that the *x*-values are getting closer to *c*. Note that the resulting secant lines tend to have slopes closer to that of the tangent line.



Slope of the Tangent Line

We call this process a *limit*. We will define the slope of the tangent line as f(x) = f(x)

$$m_{tan} = \left[\text{Limit of } \frac{f(x) - f(c)}{x - c} \text{ as } x \text{ gets closer to } c \right].$$

Our notation for this process will be

$$m_{tan} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$

The notation $\lim_{x\to c}$ reads as "the limit as *x* approaches *c*."

Notation: The notation $\lim_{x\to c}$ is always followed by an algebraic expression. It is never immediately followed by an equal sign.

A Working Definition of a Limit

Definition: Let *f* be defined on an open interval containing the number *c* except possibly at *c*. Then

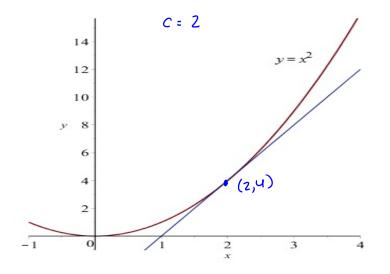
$$\lim_{x\to c} f(x) = L$$

provided the value of f(x) can be made arbitrarily close to the number *L* by taking *x* sufficiently close to *c* but not equal to *c*.

f(x) is a y-value, so L is associated with y-values. C is associated with an x-value.

Example

Use a calculator to determine the slope of the line tangent to the graph of $y = x^2$ at the point (2, 4).



 $m_{tan} = \lim_{x \to c} m_{sec} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ for $f(x) = x^2$ and c=2 $M_{tm} = \lim_{x \to 2} \frac{x^2 - z^2}{x - z}$ $f(z) = z^2$

X	$\frac{f(x)-f(2)}{x-2}$
1.9	3.9
1.99	3.99
1.999	3.999
2	undefined
2.001	4.001
2.01	4.01
2.1	4.1

The table suggest that $M_{trn} = \lim_{X \to 2} \frac{x^2 - z^2}{x - 2} = Y$

Example

<u>م</u>x

1

Use a calculator and table of values to investigate

		$\lim_{x\to 0}\frac{e^x-1}{x}$	
X	$f(x) = \frac{e^{x}-1}{x}$		The table
-0.1	0.952		The table suggests that
-0.01	0.995		suggest s me
-0.001	1.000		$0 \not a - 1$
0	undefined		$\lim_{x \to 0} \frac{e^{x}-1}{x} = 1$
0.001	1.001		
0.01	1.005		
0.1	1.052		

Question

True or False: In order to evaluate $\lim_{x\to c} f(x)$, the value of f(c) must be defined (i.e. *c* must be in the domain of *f*)?

Left and Right Hand Limits

In our examples, we considered x-values to the left (less than) and to the right (greater than) c. This illustrates the notion of **one sided limits**. We have a special notation for this.

Left Hand Limit: We write

$$\lim_{x\to c^-} f(x) = L_L$$

and say the limit as x approaches c from the left of f(x) equals L_L provided we can make f(x) arbitrarily close to the number L_L by taking x sufficiently close to, but less than c.

Left and Right Hand Limits

Right Hand Limit: We write

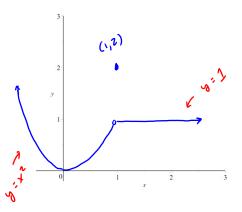
 $\lim_{x\to c^+} f(x) = L_R$

and say the limit as x approaches c from the right of f(x) equals L_R provided we can make f(x) arbitrarily close to the number L_R by taking x sufficiently close to, but greater than c.

Some other common phrases:

"from the left" is the same as "from below" "from the right" is the same as "from above."

Plot the function
$$f(x) = \begin{cases} x^2, x < 1 \\ 2, x = 1 \\ 1, x > 1 \end{cases}$$
 Investigate $\lim_{x \to 1} f(x)$ using the fraction for the function $f(x) = \int_{x \to 1}^{x} f(x) = \int_{x \to 1}^{x} f(x)$



X	f(x)
0.9	0.81
0.99	0.9801
0.999	0.9981
1	2
1.001	l
1.01	1
1.1	1

Example Continued

$$f(x) = \begin{cases} x^2, & x < 1 \\ 2, & x = 1 \\ 1, & x > 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = 1 \qquad \text{based on the table}$$

In fact
$$\lim_{x \to 1^-} f(x) = 1$$

 $\lim_{x \to 1^+} f(x) = 1$ note $f(1) = 2$