August 19 Math 2306 sec 51 Fall 2015

Section1.1: Definitions and Terminology

Recall:

- An ordinary differential equation (ODE) has one independent variable. A partial differential equation (PDE) has two or more.
- An independent variable is one derivatives are taken with respect to.
- A dependent variable is one derivatives are taken of.
- ► The order of an equation is the order of the highest order of derivative appearing in the equation.
- We may classify equations as being linear or nonlinear.

1 / 53

Classifications

Linearity: An n^{th} order differential equation is said to be **linear** if it can be written in the form

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x).$$

Note that each of the coefficients a_0, \ldots, a_n and the right hand side g may depend on the independent variable but not on the dependent variable or any of its derivatives.

Some tell-tale signs of being nonlinear are dependent variable(s) to powers other than 1, products of dependent variables, and dependent variables inside functions like trigonometric, exponential, or logs.

Examples: Classifying Equations

Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.

Dependent is y independent is t

(a)
$$y''+2ty'=\cos t+y$$
 and order eqn.

 $y''+2ty'-y=\cos t$

This is linear

(b)
$$\frac{d^3y}{dx^3} + 2y\frac{dy}{dx} = \frac{d^2y}{dx^2} + \tan(x)$$

Dependent is y Independent is X

$$\frac{d^{3}y}{dx^{3}} - \frac{d^{2}y}{dx^{2}} + 2y \frac{dy}{dx} = ton x$$

$$\frac{d^{3}y}{dx^{3}} - \frac{d^{2}y}{dx^{2}} + 2y \frac{dy}{dx} = ton x$$

$$\frac{d^{3}y}{dx^{3}} - \frac{d^{3}y}{dx^{3}} + 2y \frac{dy}{dx} = ton x$$

The equation is nonlinear.

(c)
$$\ddot{\theta} + \frac{g}{\ell} \sin \theta = 0$$
 g and ℓ are constant

nondinear the term the

independent is t

dependent is 0 recall $0 = \frac{d^20}{dt^2}$

The egn. is nonlinear.

Solution of $F(x, y, y', ..., y^{(n)}) = 0$ (*)

Definition: A function ϕ defined on an interval I^1 and possessing at least *n* continuous derivatives on *l* is a **solution** of (*) on *l* if upon substitution (i.e. setting $y = \phi(x)$) the equation reduces to an identity.

Definition: An **implicit solution** of (*) is a relation G(x, y) = 0provided there exists at least one function $y = \phi$ that satisfies both the differential equation (*) and this relation.

¹The interval is called the *domain of the solution* or the *interval of definition*.

Examples:

Verify that the given function is a solution of the ODE on the indicated interval.

$$\phi(t) = 3e^{2t}, \quad I = (-\infty, \infty), \quad \frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0$$

$$\phi \text{ has derivatives of all orders on } \square$$
Subset $y = \phi(t) = 3e^{2t}$, $\frac{dy}{dt} = 6e^{2t}$ and $\frac{d^2y}{dt^2} = 12e^{2t}$

$$\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 12e^{2t} - 6e^{2t} - 2(3e^{2t})$$

$$O = (12 - 6 - 6)e^{2t} = 0 \Rightarrow 0 = 0$$

Dis a solution

August 17, 2015 7 / 53

$$\phi(x) = 5\tan(5x), \quad I = \left(-\frac{\pi}{10}, \frac{\pi}{10}\right), \quad y' - 25 = y^2$$

$$\lim_{x \to \infty} \tan(5x) \text{ is continuously different iable}$$

$$\lim_{x \to \infty} -\frac{\pi}{2} < 5x < \frac{\pi}{2}$$

$$\lim_{x \to \infty} -\frac{\pi}{10} < x < \frac{\pi}{10}$$

So of exists and is continuous on I

Sex
$$y = \phi(x) = S + c_n(Sx)$$

 $y' = S Sec^2(Sx) \cdot S = 2S Sec^2(Sx)$

$$y' - 25 = 25 \operatorname{Sec}^{2}(5x) - 25 = 25 \left(\operatorname{Sec}^{2}(5x) - 1 \right)$$

$$y^{2} = \left(\operatorname{Ston}(5x) \right)^{2} = 25 \operatorname{ton}^{2}(5x)$$
Use the ID $\operatorname{Sec}^{2}\theta - 1 = \operatorname{ton}^{2}\theta$

Go
$$y'-25=25\left(\frac{5c^2(5x)-1}{5c^2(5x)}=\frac{3}{25}\right)$$
 we be obtained
$$25 + \frac{3}{5c^2(5x)}=25 + \frac{3}{5c^2(5x)}$$
which is an identity.

\$\phi\$ a solution on I.

$$\phi(x) = \sqrt{\ln x + 1}, \quad I = (1, \infty), \quad dx - 2xy \, dy = 0$$
We need $\ln x + 1 \ge 0 \Rightarrow \ln x \ge -1$
This holds since $\ln x > 0$ for $x > 1$.

Set $y = \phi(x) = (\ln x + 1)$

$$\frac{dy}{dx} = \frac{1}{2} (\ln x + 1) \cdot \frac{1}{x} = \frac{1}{2\sqrt{\ln x + 1}} (x)$$

$$\Rightarrow \frac{db}{dx} = \frac{1}{2xy}$$
 (This is the Normal form)

from
$$\frac{dy}{dx} = \frac{1}{2x \sqrt{2nx+1}}$$
 and $\frac{1}{2x \sqrt{2}} = \frac{1}{2x \sqrt{2nx+1}}$

so dis a solution on I