August 19 Math 2306 sec 51 Fall 2015

Section1.1: Definitions and Terminology

Recall:

- An ordinary differential equation (ODE) has one independent variable. A partial differential equation (PDE) has two or more.
- An independent variable is one derivatives are taken with respect to.
- A dependent variable is one derivatives are taken of.
- The order of an equation is the order of the highest order of derivative appearing in the equation.
- We may classify equations as being linear or nonlinear.

Classifications

Linearity: An $n^{\text {th }}$ order differential equation is said to be linear if it can be written in the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

Note that each of the coefficients a_{0}, \ldots, a_{n} and the right hand side g may depend on the independent variable but not on the dependent variable or any of its derivatives.

Some tell-tale signs of being nonlinear are dependent variable(s) to powers other than 1, products of dependent variables, and dependent variables inside functions like trigonometric, exponential, or logs.

Examples: Classifying Equations
Identify the independent and dependent variables. Determine the order of the equation. State whether it is linear or nonlinear.
(a) $y^{\prime \prime}+2 t y^{\prime}=\cos t+y$

Dependent is y independent is t
$2^{\text {nd }}$ order eqn.

$$
y^{\prime \prime}+2 t y^{\prime}-y=\cos t
$$

This is linear

Dependent is y
(b) $\frac{d^{3} y}{d x^{3}}+2 y \frac{d y}{d x}=\frac{d^{2} y}{d x^{2}}+\tan (x)$ Independent is x $3^{\text {rd }}$ orden

$$
\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}+2 y \frac{d y}{d x}=\tan x
$$

$$
\begin{aligned}
& \text { nonlinear of } \frac{d y}{d x} \\
& \text { termefficieut on } y \\
& \text { coeftepends }
\end{aligned}
$$

nonlineer

The equation is nonlinear.
(c) $\ddot{\theta}+\frac{g}{\ell} \sin \theta=0 \quad g$ and ℓ are constant

dependent is θ independent is recall $\ddot{\theta}=\frac{d^{2} \theta}{d t^{2}}$ $2^{\text {nd }}$ order eqn.

The eqn. is ron linear.

Solution of $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0\left(^{*}\right)$

Definition: A function ϕ defined on an interval I^{1} and possessing at least n continuous derivatives on / is a solution of (*) on / if upon substitution (i.e. setting $y=\phi(x)$) the equation reduces to an identity.

Definition: An implicit solution of $\left(^{*}\right)$ is a relation $G(x, y)=0$ provided there exists at least one function $y=\phi$ that satisfies both the differential equation (*) and this relation.

[^0]Examples:
Verify that the given function is a solution of the ODE on the indicated interval.

$$
\phi(t)=3 e^{2 t}, \quad I=(-\infty, \infty), \quad \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y=0
$$

ϕ has derivatives of all orders on I Set $y=\phi(t)=3 e^{2 t}, \quad \frac{d y}{d t}=6 e^{2 t}$ and $\frac{d^{2} y}{d t^{2}}=12 e^{2 t}$

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y & =12 e^{2 t}-6 e^{2 t}-2\left(3 e^{2 t}\right) \\
0 & =(12-6-6) e^{2 t}=0 \Rightarrow 0=0
\end{aligned}
$$

ϕ is a solution

$$
\phi(x)=5 \tan (5 x), \quad I=\left(-\frac{\pi}{10}, \frac{\pi}{10}\right), \quad y^{\prime}-25=y^{2}
$$

Note $\tan \left(s_{x}\right)$ is continuously different table

$$
\begin{array}{ll}
\text { if } & \frac{-\pi}{2}<5 x<\frac{\pi}{2} \\
\text { ie. } & -\frac{\pi}{10}<x<\frac{\pi}{10}
\end{array}
$$

so ϕ^{\prime} exists and is continuous on I

Set $y=\phi(x)=5 \tan (5 x)$

$$
y^{\prime}=5 \sec ^{2}(5 x) \cdot 5=25 \sec ^{2}(5 x)
$$

$$
\begin{aligned}
y^{\prime}-25 & =25 \sec ^{2}(5 x)-25=25\left(\sec ^{2}(5 x)-1\right) \\
y^{2} & =(5 \tan (5 x))^{2}=25 \tan ^{2}(5 x)
\end{aligned}
$$

use the $D \sec ^{2} \theta-1=\tan ^{2} \theta$

So

$$
y^{\prime}-25=25\left(\sec ^{2}(5 x)-1\right)=25 \tan ^{2}(5 x)=y^{2}
$$

we' se obtained

$$
25 \tan ^{2}(5 x)=25 \tan ^{2}(5 x)
$$

which is on identiter.
ϕ is a solution on I.

$$
\phi(x)=\sqrt{\ln x+1}, \quad I=(1, \infty), \quad d x-2 x y d y=0
$$

we read $\ln x+1 \geqslant 0 \Rightarrow \ln x \geqslant-1$ This holds since $\ln x>0$ for $x>1$.

Set $y=\phi(x)=(\ln x+1)^{1 / 2}$

$$
\frac{d y}{d x}=\frac{1}{2}(\ln x+1)^{-1 / 2} \cdot \frac{1}{x}=\frac{1}{2 \sqrt{\ln x+1}(x)}
$$

From $\quad d x-2 x y d y=0 \quad 2 x y d y=d x$

$$
\Rightarrow \frac{d y}{d x}=\frac{1}{2 x y} \quad \text { (This is the Normed form) }
$$

$$
\text { from }{ }_{\text {bo }} \text { or } \frac{d y}{d x}=\frac{1}{2 x \sqrt{\ln x+1}} \text { and } \frac{1}{2 x y}=\frac{1}{2 x \sqrt{\ln x+1}}
$$

So we have

$$
\frac{1}{2 x \sqrt{\operatorname{sn} x+1}}=\frac{1}{2 x \sqrt{\operatorname{an} x+1}}
$$

on identity
so ϕ is a solution on I

[^0]: ${ }^{1}$ The interval is called the domain of the solution or the interval of definition.

