## August 20 MATH 1113 sec. 52 Fall 2018

## Section 1.2: Relations \& Functions

Domain \& Range Unless stated otherwise, the domain of a function defined by an equation $y=f(x)$ is assumed to be the largest subset of the real numbers for which the value $f(x)$ is defined. In general, we eliminate any real numbers for which $f(x)$ is not defined as a real number. Recall

- division by zero is not defined
- negative numbers do not have any even roots (square root, fourth root, etc.)
- other function properties are (or will be) known such as negative numbers having no logarithms

Example
Determine the domain of each function.
(b) $f(x)=\frac{\sqrt{x}}{x-1}$ What $x$ values are not in the domain?

* $x-1 \neq 0$ so $x \neq 1$
* from $\sqrt{x}$ we read $x \geqslant 0$.

So the domain is all $x$ such that $x \geqslant 0$ and $x \neq 1$. In set rotation, the domain is $[0,1) \cup(1, \infty)$.
$U$-union set Uset "set and set"
[ value included (-value not included
$\cap$ intersection

August 17, $2018 \quad 2 / 23$

## Question

The domain of $f(x)=\frac{x^{2}}{\sqrt[4]{x+3}}$ is
(a) $(-3, \infty)$

Because $\sqrt[4]{x+3}$ is
in the denoninator, we requive $x+3>0$
(b) $(-2,0) \cup(0, \infty)$
ie. $x>-3$
(c) $[-3, \infty)$
(d) $(-\infty,-3) \cup(-3, \infty)$

## Domain \& Range

- The range may be difficult to infer from a formula. Sometimes it is possible by recalling known properties-e.g. $|x|$ is always nonnegative.
- The domain and range can often be determined from a graph.
- Recall that the range is the set of all possible $f(x)$-i.e. $y$-values.

Domain \& Range from a Graph
Domain $\rightarrow x$-values


The left and right mort $x$-vols are -4 and 4 . all $x$ in $[-4,-1)$ are inchided. all $x$ in $[-1,1)$ are included.
all $x$ in $(1,4)$ are included
The domoin is

$$
\begin{aligned}
& {[-4,1) \cup(1,4]} \\
& {[-4,-1) \cup[-1,1)}
\end{aligned}
$$

Figure: Identify the domain from the plot of $y_{0}=f(\underline{x})$

Domain \& Range from a Graph
Range $y$-values


The lowest and highest $y$-values ane -3 and 2 .

All $y$ in $[-3,1]$ a inched. All $y$ in $[1,2)$ are as well

The range is

$$
[-3,2)
$$

Figure: Identify the range from the plot of $y=f(x)$

