August 20 Math 2306 sec. 53 Fall 2018

Section 2: Initial Value Problems

An initial value problem consists of an ODE with a certain type of additional conditions.

Solve the equation ${ }^{1}$

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP).
${ }^{1}$ on some interval / containing x_{0}.

Example
Part 1
Show that for any constant c the relation $x^{2}+y^{2}=c$ is an implicit solution of the ODE

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

Using implicit diff, assume $x^{2}+y^{2}=C$ for some C. $2 x+2 y \frac{d y}{d x}=0$ solve for $\frac{d y}{d x}$

$$
2 y \frac{d y}{d x}=-2 x \Rightarrow \text { for } y \neq 0 \quad \frac{d y}{d x}=\frac{-2 x}{2 y}=\frac{-x}{y}
$$

This is the correct $O D E$. So $x^{2}+y^{2}=C$ defines solutions to $\frac{d y}{d x}=\frac{-x}{y}$.

Example
Part 2
Use the preceding results to find an explicit solution of the IVP

$$
\frac{d y}{d x}=-\frac{x}{y}, \quad y(0)=-2
$$

From before, solutions are given by

$$
x^{2}+y^{2}=C \text { for constant } C \text {. }
$$

If we impose $y(0)=-2$, we get

$$
(0)^{2}+(-2)^{2}=c \Rightarrow c=4
$$

So to satisfy the IV P, we require

$$
x^{2}+y^{2}=4 .
$$

To set an explicit solution, solve for y :

$$
\begin{aligned}
y^{2}=4-x^{2} \Rightarrow y & =\sqrt{4-x^{2}} \text { or } \\
y & =-\sqrt{4-x^{2}}
\end{aligned}
$$

Recall that $b(0)=-2$. Only the $2^{\text {nd }}$ option satisfies the sign requirement.

The solution to the IVP is

$$
y=-\sqrt{4-x^{2}} .
$$

Graphical Interpretation

$$
-x^{2}
$$

Figure: Each curve solves $y^{\prime}+2 x y=0, y(0)=y_{0}$. Each colored curve corresponds to a different value of y_{0}

Existence and Uniqueness

Two important questions we can always pose (and sometimes answer) are
(1) Does an IVP have a solution? (existence) and
(2) If it does, is there just one? (uniqueness)

Hopefully it's obvious that we can't solve $\left(\frac{d y}{d x}\right)^{2}+1=-y^{2}$.

Uniqueness

Consider the IVP

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Verify that $y=\frac{x^{4}}{16}$ is a solution of the IVP.
Solving an IVP means satisfying a differential equation AND satisfying an initial condition.

Show that $y=\frac{x^{4}}{16}$ satisfies the initial condition:

$$
\begin{aligned}
& \text { we need to show } y=0 \text { when } x=0 \\
& y(0)=\frac{0^{4}}{16}=\frac{0}{16}=0 \quad \text { as requised }
\end{aligned}
$$

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Show that $y=\frac{x^{4}}{16}$ solves the differential equation:
Note $y^{\prime}=\frac{4 x^{3}}{16}=\frac{x^{3}}{4}$ also

$$
\begin{aligned}
& x \sqrt{y}=x \sqrt{\frac{x^{4}}{16}}=x \frac{\sqrt{x^{4}}}{\sqrt{16}}=x \frac{\left|x^{2}\right|}{4}=x \frac{x^{2}}{4}=\frac{x^{3}}{4} \\
& \frac{d y}{d x}=\frac{x^{3}}{4}=\frac{x^{3}}{4}=x \sqrt{y} \quad \text { the function } \\
& \text { satisfies the ODE }
\end{aligned}
$$

Verify that the function $y=0$ is a solution to the IVP.
whiting $y=0$, note $y(0)=0$ it solves the IC.
Also, if $y(x)=0$ then

$$
\frac{d y}{d x}=0 \text { and } x \sqrt{y}=x \sqrt{0}=0
$$

$\frac{d y}{d x}=0=x \sqrt{y}$ it solver the ODE tool

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$
\frac{d y}{d x}=g(x)
$$

For example, solve the ODE

$$
\begin{aligned}
& \frac{d y}{d x}=4 e^{2 x}+1 . \quad \begin{array}{l}
\text { Integrate } \\
\int \frac{d y}{d x} d x=\int\left(4 e^{2 x}+1\right) d x \\
y=2 e^{2 x}+x+C
\end{array}, ~
\end{aligned}
$$

Separable Equations

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

Determine which (if any) of the following are separable.
(a) $\frac{d y}{d x}=x^{3} y$
yes infect $g(x)=x^{3}$ and $h(y)=y$
(b) $\frac{d y}{d x}=2 x+y \quad$ not separable
(c) $\frac{d y}{d x}=\sin \left(x y^{2}\right) \quad$ Not sepanable
(d) $\frac{d y}{d t}-t e^{t-y}=0 \Rightarrow \frac{d y}{d t}=t e^{t-y}=t e^{t} \cdot e^{-y}$

Is sepachle w1

$$
g(t)=t e^{t} \text { and } h(y)=e^{-y}
$$

