August 22 MATH 1113 sec. 51 Fall 2018

Section 2.2: The Algebra of Functions

Let f and g be functions, and suppose that x is in the domain of each. Then define $f+g, f-g, f g$ and f / g, and use the following notation

- $(f+g)(x)=f(x)+g(x)$
- $(f-g)(x)=f(x)-g(x)$
- $(f g)(x)=f(x) g(x)$
- $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ provided $g(x) \neq 0$

Domain

For functions f and g, the domain of $f+g, f-g$, and $f g$ is the set of all x such that x is in the domain of f and x is in the domain of g.
the intersection of the domains of f and g

The domain of f / g is the set of all all x such that x is in the domain of f, x is in the domain of g, and $g(x) \neq 0$.
the domain of fg less any x such that $g(x)=0$

Example
Let $f(x)=\sqrt{x+1}$ and $g(x)=3 x^{2}$. Evaluate
(a)

$$
\begin{aligned}
(f+g)(3)=f(3)+g(3)=\sqrt{3+1}+3\left(3^{2}\right)=\sqrt{4}+3(9) & =2+27 \\
& =29
\end{aligned}
$$

(b) $(f-g)\left(-\frac{3}{4}\right)$

$$
\begin{aligned}
& =f\left(\frac{-3}{4}\right)-g\left(-\frac{3}{4}\right) \\
& =\sqrt{\frac{-3}{4}+1}-3\left(\frac{-3}{4}\right)^{2}=\sqrt{\frac{1}{4}}-3\left(\frac{9}{16}\right) \\
& \quad=\frac{1}{2}-\frac{27}{16}=\frac{8-27}{16}=\frac{-19}{16}
\end{aligned}
$$

Example
Let $f(x)=\sqrt{x+1}$ and $g(x)=3 x^{2}$. Identify the domains of $f+g$ and f / g.

For x in the domain of f, we requite $x+1 \geqslant 0 \Rightarrow x \geqslant-1$. In interval notation the domain of f is $[-1, \infty)$. The domain of g is all reals, ie. $(-\infty, \infty)$. The intersection is $[-1, \infty)$. The domain of $f+g$ is $[-1, \infty)$.

$$
f(x)=\sqrt{x+1} \quad, \quad f(x)=3 x^{2}
$$

The domain of $f+g$ is $[-1, \infty)$.
Note $g(x)=0 \Rightarrow 3 x^{2}=0 \Rightarrow x=0$.
The domain of $\frac{f}{g}$ is

$$
[-1,0) \cup(0, \infty)
$$

Question

Let $f(x)=2 x^{2}$ and $g(x)=\frac{2}{x-5}$. Evaluate $(f g)(2)$ and $\left(\frac{f}{g}\right)(1)$.
(a) $(f g)(2)=-3$ and $\left(\frac{f}{g}\right)(1)=-4$

$$
\begin{aligned}
\left(f_{s}\right)(2) & =f(2) g(2) \\
& =2\left(2^{2}\right)\left(\frac{2}{2-5}\right)
\end{aligned}
$$

(b) $(f g)(2)=-\frac{16}{3}$ and $\left(\frac{f}{g}\right)(1)=-1$

$$
=2.4\left(\frac{2}{-3}\right)=\frac{-16}{3}
$$

(c) $(f g)(2)=-\frac{16}{3}$ and $\left(\frac{f}{g}\right)$

$$
\left(\frac{f}{s}\right)(1)=\frac{f(1)}{g(1)}=\frac{2\left(1^{2}\right)}{\frac{2}{1-s}}
$$

(d) $(f g)(2)=\frac{16}{3}$ and $\left(\frac{f}{g}\right)(1)=-1$

$$
=\frac{2}{-\frac{2}{4}}=2(-2)=-4
$$

Section 2.3: Compositions

Suppose a spherical balloon is inflated so that the radius after time t seconds is given by the function $r(t)=2 t \mathrm{~cm}$. The volume of a sphere of radius r is known to be $V(r)=\frac{4}{3} \pi r^{3}$. Note that

- r is a function of t, and
- V is a function of r, making
- V a function of t (through its dependence on r). In fact,

$$
V(t)=V(r(t))=\frac{4}{3} \pi(2 t)^{3}=\frac{32}{3} \pi t^{3} .
$$

This is an example of a composition of functions.

Composition: Definition and Notation

Let f and g be functions. Then the composite function denoted

$$
f \circ g
$$

also called the composition of f and g, is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f.

The expression $f \circ g$ is read " f composed with g ", and $(f \circ g)(x)$ is read " f of g of x ".

Example
Let $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$. Evaluate each expression if possible.
(a) $(f \circ g)(1)=f(g(1))=f\left(\frac{2}{1+1}\right)=f\left(\frac{2}{2}\right)=f(1)=\sqrt{1-1}=0$
(b) $(f \circ g)(0)=f(g(0))=f\left(\frac{2}{0+1}\right)=f(2)=\sqrt{2-1}=\sqrt{1}=1$
(c) $(g \circ f)(0)=g(f(0))=g(\sqrt{0-1})=g(\sqrt{-1})$ undefined
O is not in the domain of gof its rot in the domain of f either.

Question

Let $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$. Evaluate $(g \circ f)(1)$ if possible.
(a) $(g \circ f)(1)=0$

$$
=g(f(11)
$$

$$
=g(\sqrt{1-1})
$$

$$
=g(0)=\frac{2}{0+1}=2
$$

(d) $(g \circ f)(1)$ is undefined

