August 22 MATH 1113 sec. 52 Fall 2018

Section 2.2: The Algebra of Functions

Let f and g be functions, and suppose that x is in the domain of each. Then define $f+g, f-g, f g$ and f / g, and use the following notation

- $(f+g)(x)=f(x)+g(x)$
- $(f-g)(x)=f(x)-g(x)$
- $(f g)(x)=f(x) g(x)$
- $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ provided $g(x) \neq 0$

Domain

For functions f and g, the domain of $f+g, f-g$, and $f g$ is the set of all x such that x is in the domain of f and x is in the domain of g.
the intersection of the domains of f and g

The domain of f / g is the set of all all x such that x is in the domain of f, x is in the domain of g, and $g(x) \neq 0$.
the domain of fg less any x such that $g(x)=0$

Example
Let $f(x)=\sqrt{x+1}$ and $g(x)=3 x^{2}$. Evaluate
(a)

$$
\begin{aligned}
(f+g)(3)=f(3)+g(3)=\sqrt{3+1} & +3\left(3^{2}\right): \sqrt{4}+3(9) \\
& =2+27=29
\end{aligned}
$$

(b) $(f-g)\left(-\frac{3}{4}\right)$

$$
\begin{aligned}
& =f\left(-\frac{3}{4}\right)-g\left(\frac{-3}{4}\right) \\
& =\sqrt{\frac{-3}{4}+1}-3\left(\frac{-3}{4}\right)^{2}=\sqrt{\frac{1}{4}}-3\left(\frac{9}{16}\right)=\frac{1}{2}-\frac{27}{16} \\
& =\frac{8-27}{16}=\frac{-19}{16}
\end{aligned}
$$

Example
Let $f(x)=\sqrt{x+1}$ and $g(x)=3 x^{2}$. Identify the domains of $f+g$ and f / g.

For x in the domain of f, we require $x+1 \geqslant 0 \Rightarrow x \geqslant-1$. In interval notation the domain of f is $[-1, \infty)$.
The domain of g is all reals; in interval notation $(-\infty, \infty)$.

The domain of $f+g$ is $[-1, \infty)$.
For the domain of $\frac{f}{g}$, note that the equation $\delta(x)=0 \Rightarrow 3 x^{2}=0$ has on solution $x=0$. So the domain of $\frac{f}{g}$ is the interval $[-1, \infty)$ whthat $x=0$.
$[-1,0) \cup(0, \infty)$ is the domain of $\frac{f}{g}$.

Question

Let $f(x)=2 x^{2}$ and $g(x)=\frac{2}{x-5}$. Evaluate $(f g)(2)$ and $\left(\frac{f}{g}\right)(1)$.
(a) $(f g)(2)=-3$ and $\left(\frac{f}{g}\right)(1)=-4$
(b) $(f g)(2)=-\frac{16}{3}$ and $\left(\frac{f}{g}\right)(1)=-1$

$$
\begin{aligned}
\left(f_{g}\right)(2) & =f(2) g(2) \\
& =2\left(2^{2}\right)\left(\frac{2}{2-5}\right) \\
& =2 \cdot 4 \cdot \frac{2}{-3}=\frac{-16}{3}
\end{aligned}
$$

(C) $)(f g)(2)=-\frac{16}{3}$ and $\left(\frac{f}{g}\right)(1)=-4$
(d) $(f g)(2)=\frac{16}{3}$ and $\left(\frac{f}{g}\right)(1)=-1$

$$
\begin{aligned}
& \left(\frac{f}{s}\right)(1)=\frac{f(1)}{g(1)}=\frac{2\left(1^{2}\right)}{\frac{2}{1-5}} \\
& =\frac{2}{\frac{2}{4}}=\frac{2}{-1 / 2}=2(-2)=-4
\end{aligned}
$$

