August 22 Math 1190 sec. 51 Fall 2016

Section 1.1: Limits of Functions Using Numerical and Graphical Techniques

Definition: Let *f* be defined on an open interval containing the number *c* except possibly at *c*. Then

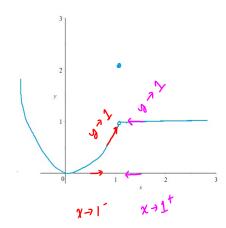
$$\lim_{x\to c}f(x)=L$$

provided the value of f(x) can be made arbitrarily close to the number *L* by taking *x* sufficiently close to *c* but not equal to *c*.

We similarly defined left and right hand limits using the conventional notation.

left
$$\lim_{x \to c^-} f(x) = L_L$$
, right $\lim_{x \to c^+} f(x) = L_R$

Plot the function $f(x) = \begin{cases} x^2, & x < 1 \\ 2, & x = 1 \\ 1, & x > 1 \end{cases}$ Investigate $\lim_{x \to 1} f(x)$ using the graph.



X	f(x)
0.9	0.81
0.99	0.9801
0.999	0.9981
1	2
1.001	
1.01	1
1.1	-

Example Continued

$$f(x) = \begin{cases} x^2, & x < 1 \\ 2, & x = 1 \\ 1, & x > 1 \end{cases}$$

Based on the table, we concluded that

$$\lim_{x \to 1^+} f(x) = 1 \text{ and } \lim_{x \to 1^-} f(x) = 1 \text{ and } \lim_{x \to 1} f(x) = 1$$

The y-values on the graph head toward the hole in the graph \mathcal{C} (1,1) as $x \to 1$ from both sides.

Observations

Observation 1: The limit *L* of a function f(x) as *x* approaches *c* does not depend on whether f(c) exists or what it's value may be.

Observation 2: If $\lim_{x\to c} f(x) = L$, then the number *L* is unique. That is, a function can not have two different limits as *x* approaches a single number *c*.

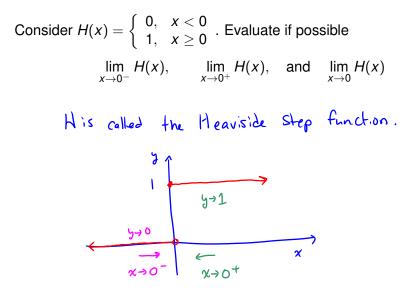
Observation 3: A function need not have a limit as *x* approaches *c*. If f(x) can not be made arbitrarily close to any one number *L* as *x* approaches *c*, then we say that $\lim_{x\to c} f(x)$ **does not exist** (shorthand **DNE**).

Questions

(1) True or False It is possible that both $\lim_{x\to 3} f(x) = 5$ AND f(3) = 7. True, the limit and flas need not coincide.

(2) **True or False** It is possible that both $\lim_{x\to 3} f(x) = 5$ AND $\lim_{x\to 3} f(x) = 7$. False, if there is a limit L, it is unique.

A Limit Failing to Exist



$$H(x) = \left\{egin{array}{cc} 0, & x < 0\ 1, & x \geq 0 \end{array}
ight.$$

 $\lim_{x\to 0^-} H(x) = 0 \quad \text{in fact} \quad H(x) = 0 \quad \text{for all } x \text{ to the left of } 0.$

 $\lim_{x\to 0^+} H(x) = 1 \quad \text{in fact}, \quad H(x) = 1 \quad \text{for all } x \text{ to the right of } 0.$

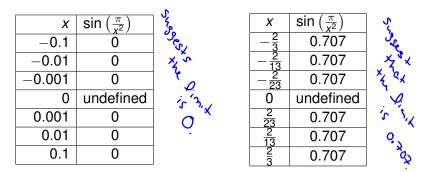
 $\lim_{x\to 0} H(x) \text{ Does Not Exist} \qquad \text{The graph of H has a}$ $\lim_{x\to 0} H(x) \text{ Does Not Exist} \qquad \text{Jump C } x=0. \quad \text{When left and}$ $\operatorname{right} \lim_{x\to 0} \operatorname{Limits} \operatorname{Lisagree}, \quad \text{the limit doesn't}$ $\operatorname{exist}.$

Weakness of Technology

Suppose we wish to investigate

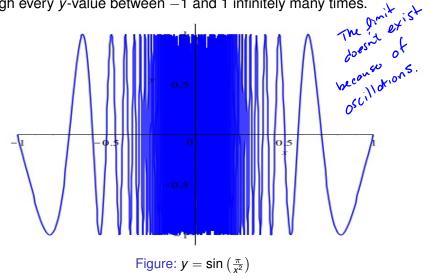
$$\lim_{x\to 0} \sin\left(\frac{\pi}{x^2}\right).$$

We consider values of x closer to zero, and plug them into a calculator. Let's look at two attempts.



Weakness of Technology

In every interval containing zero, the graph of $sin(\pi/x^2)$ passes through every *y*-value between -1 and 1 infinitely many times.



Evaluating Limits

As this example illustrates, we would like to avoid too much reliance on technology for evaluating limits. The next section will be devoted to techniques for doing this for reasonably well behaved functions. We close with one theorem.

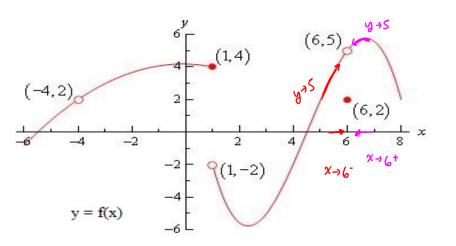
Theorem: Let f be defined on an open interval containing c except possible at c. Then

$$\lim_{x\to c}f(x)=L$$

if and only if

$$\lim_{x\to c^-} f(x) = L \quad \text{and} \quad \lim_{x\to c^+} f(x) = L.$$

Example



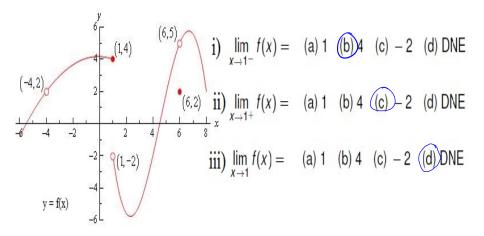
Use the previous figure to evaluate if possible

(a)
$$\lim_{x\to 6^-} f(x) = 5$$

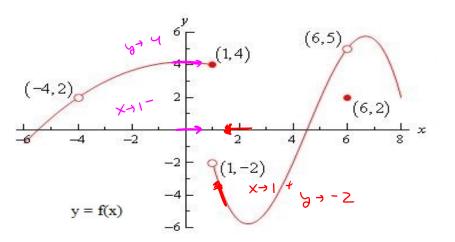
(b) $\lim_{x \to 6^+} f(x) = 5$

(d)
$$\lim_{x\to 6} f(x) = 5$$

Question



Limits and Jumps



Section 1.2: Limits of Functions Using Properties of Limits

We begin with two of the simplest limits we may encounter.

Theorem: If f(x) = A where A is a constant, then for any real number c $\lim_{x \to c} f(x) = \lim_{x \to c} A = A$

Theorem: If f(x) = x, then for any real number *c*

$$\lim_{x\to c} f(x) = \lim_{x\to c} x = c$$

Examples

(a) $\lim_{x\to 0} 7 = 7$ ISt Thm w) A=7, C=0

(b) $\lim_{x\to\pi} 3\pi = 3\pi$ ist thm. If $A = 3\pi$, $c = \pi$

(c) $\lim_{x \to -\sqrt{5}} x = -\sqrt{5}$ 2^{n2} then $f(x) = x \quad \omega$ $c = -\sqrt{5}$

(d) $\lim_{x \to 4^{-}} x = 4$ Since $\lim_{x \to 4^{-}} x = 4$, so both \bot sided $\int_{1, \infty, 1/2} \infty L$