August 22 Math 2306 sec. 53 Fall 2018

Section 3: Separation of Variables

In this section, we will restrict attention to first order, separable differential equations. This is the first section in which we will start with an ODE and use an approach to find a solution.

Definition: A separable differential equation is a first order equation that can be written in the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

The defining characteristic is that the right hand side can be expressed as a product of a function of x alone and a function of y alone.

Solving Separable Equations

Recall that from $\frac{d y}{d x}=g(x)$, we can integrate both sides

$$
\begin{aligned}
& \int \frac{d y}{d x} d x=\int g(x) d x . \\
& \int d y=\int g(x) d x \\
& y=G(x)+C \quad \text { where } G(x) \text { is on } \begin{array}{l}
\text { antidenivetwe of } \\
g(x)
\end{array}
\end{aligned}
$$

We'll use this observation!

Solving Separable Equations
Let's assume that it's safe to divide by $h(y)$ and let's set $p(y)=1 / h(y)$. We solve (usually find an implicit solution) by separating the variables.

Let's get y 's on one side, x 's on the other.

$$
\begin{array}{ll}
\frac{d y}{d x}=g(x) h(y) & \frac{1}{h(y)} \frac{d y}{d x}=g(x)
\end{array} \quad \begin{aligned}
& \text { multi. } \rho_{y} \text { by } d x \\
& \frac{1}{h(y)} \frac{d y}{d x} d x=g(x) d x
\end{aligned} \quad * \frac{d y}{d x} d x=0
$$

where P, G are antider.

$$
P(y)=G(x)+C
$$ of p and g.

Solve the ODE it is separable.

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{x}{y}=-x\left(\frac{1}{y}\right) \quad \frac{1}{1 / y} \frac{d y}{d x}=-x \\
& y \frac{d y}{d x}=-x \Rightarrow \int y \frac{d y}{d x} d x=\int-x d x \\
& \int y d y=-\int x d x \Rightarrow \frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+k
\end{aligned}
$$

Clearing it up $y^{2}=-x^{2}+2 k$ let $c=2 k$

$$
y^{2}=-x^{2}+c \quad \Rightarrow \quad x^{2}+y^{2}=c
$$

The solutions are defined implicitly by the relation $x^{2}+y^{2}=C$.

An Initial Value Problem: Solve the IVP
$t e^{t-y} d t-d y=0, \quad y(0)=1 \quad$ The ODE is separable.

$$
\begin{array}{rlrl}
d y & =t e^{t-y} d t=t e^{t} e^{-y} d t \Rightarrow & \frac{1}{e^{-y} d y}=t e^{t} d t \\
& \int e^{y} d y=\int t e^{t} d t & & \text { using Int by pouts on } \\
\text { the right }
\end{array} \quad \begin{array}{ll}
u: t \quad d u=d t \\
e^{y} & =t e^{t}-\int e^{t} d t
\end{array} \quad \begin{array}{ll}
v=e^{t} d v=e^{t} d t \\
& =t e^{t}-e^{t}+C
\end{array}
$$

Solutions to the ODE are given by

$$
e^{b}=t e^{t}-e^{t}+C
$$

Now we impose the condition $y(0)=1$.

$$
\underbrace{\partial(0)}_{y=1}=1 . \quad \text { whin } t=0
$$

$$
e^{\prime}=o e^{\circ}-e^{\circ}+C \Rightarrow e=0-1+C \Rightarrow C=e+1
$$

The solution to the IVP is given implicitly by $e^{y}=t e^{t}-e^{t}+e+1$.
The explicit solution is $y=\ln \left(t e^{t}-e^{t}+e+1\right)$

Caveat regarding division by $h(y)$.

Recall that the IVP $\quad \frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0$
has two solutions

$$
y(x)=\frac{x^{4}}{16} \quad \text { and } \quad y(x)=0 .
$$

If we separate the variables

$$
\frac{1}{\sqrt{y}} d y=x d x
$$

we lose the second solution.
Why? Dividing out \sqrt{y} assumes $y \neq 0$!

Solutions Defined by Integrals
Recall (Fundamental Theorem of Calculus) for g continuous on an interval containing x_{0} and x

$$
\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x) \quad \text { and } \quad \int_{x_{0}}^{x} \frac{d y}{d t} d t=y(x)-y\left(x_{0}\right) .
$$

Assuming g is continuous at x_{0}, use this to solve

$$
\frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0}
$$

Multi. by $d t$ and integrate from x_{0} to x (using the dumniy variable t)

$$
\int_{x_{0}}^{x} \frac{d y}{d t} d t=\int_{x_{0}}^{x} \delta(t) d t
$$

$$
\begin{aligned}
& y(x)-y\left(x_{0}\right)=\int_{x_{0}}^{x} g(t) d t \\
& y(x)=y_{0}+\int_{x_{0}}^{x} g(t) d t
\end{aligned}
$$

exercise: verity that this solves the IVP

Example
Express the solution of the IVP in terms of an integral.

$$
\frac{d y}{d x}=\sin \left(x^{2}\right), \quad y(\sqrt{\pi})=1 \quad \text { here } g(x)=\sin \left(x^{2}\right) \text { and }
$$

$$
x_{0}=\sqrt{\pi} \text { and } y_{0}=1
$$

The form was

$$
y(x)=y_{0}+\int_{x_{0}}^{x} g(t) d t
$$

So

$$
y(x)=1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t
$$

