August 22 Math 2306 sec. 57 Fall 2017

Section 3: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$
\frac{d y}{d x}=g(x)
$$

For example, solve the ODE

$$
\begin{gathered}
* \int e^{a x} d x=\frac{1}{a} e^{a x}+c \\
\text { for } a \neq 0
\end{gathered}
$$

$\frac{d y}{d x}=4 e^{2 x}+1$.
$y=\int\left(4 e^{2 x}+1\right) d x$

Separable Equations

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

Determine which (if any) of the following are separable.
(a) $\frac{d y}{d x}=x^{3} y$
yes it's separable with

$$
g(x)=x^{3} \quad \text { and } \quad h(y)=y
$$

(b) $\frac{d y}{d x}=2 x+y \quad$ this is not separable.
(c) $\frac{d y}{d x}=\sin \left(x y^{2}\right)$ wot sepanable, $x y^{2}$ wonld be but $\sin \left(x y^{2}\right)$ is not
(d) $\frac{d y}{d t}-t e^{t-y}=0 \Rightarrow \frac{d y}{d t}=t e^{t-y}=\underbrace{t}_{\sim} e^{t} \cdot e^{-y}$ This is separoble.

Solving Separable Equations

Recall that from $\frac{d y}{d x}=g(x)$, we can integrate both sides

$$
\begin{aligned}
& \int \frac{d y}{d x} d x=\int g(x) d x . \\
& \int d y= \int g(x) d x \\
& y= G(x)+C \quad \text { when } G \text { is some } \\
& \text { artiderivative of } \\
& \text { of }
\end{aligned}
$$

We'll use this observation!

Solving Separable Equations
Let's assume that it's safe to divide by $h(y)$ and let's set $p(y)=1 / h(y)$. We solve (usually find an implicit solution) by separating the variables.

$$
\begin{aligned}
\frac{d y}{d x}=g(x) h(y) & \text { Divide by } h(y) \\
\frac{1}{h(y)} \frac{d y}{d x} & =g(x) \quad \begin{array}{l}
\text { multiply, by } d x \\
\text { and inter grate }
\end{array} \\
\int p(y) \frac{d y}{d x} d x & =\int g(x) d x \\
\int p(y) d y & =\int g(x) d x
\end{aligned}
$$

$$
P(y)=G(x)+C
$$

where P and G are antiderivatues of p and g, respectively.
$P(y)=G(x)+C$ defines a 1 -parameter family of solutions implicitly.

Solve the ODE

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{x}{y}=-x \cdot \frac{1}{y} \Rightarrow \begin{array}{r}
\frac{1}{1 / y} \frac{d y}{d x}=-x \\
y \frac{d y}{d x}=-x
\end{array} \\
& \Rightarrow \int y \frac{d y}{d x} d x=\int-x d x \Rightarrow \int y d y=-\int x d x \\
& \Rightarrow \frac{y^{2}}{2}=-\frac{x^{2}}{2}+C \quad \text { Malt by } 2 \text { and let } 2 c=k \\
& y^{2}=-x^{2}+k \Rightarrow x^{2}+y^{2}=k
\end{aligned}
$$

An IVP ${ }^{1}$

$$
\begin{aligned}
& \frac{d y}{d t}-t e^{t-y}=0, \quad y(0)=1 \\
& \frac{d y}{d t}=t e^{t} \cdot e^{-y} \Rightarrow \frac{1}{e^{-y}} \frac{d y}{d t}=t e^{t} \\
& e^{y} \frac{d y}{d t}=t e^{t} \Rightarrow \int e^{y} \frac{d y}{d t} d t=\int t e^{t} d t \\
& \int e^{y} d y=\int t e^{t} d t \quad \\
& \quad \begin{array}{ll}
\ln t \text { by pats } & u=t u=d t \\
e^{y}=t e^{t}-\int e^{t} d t & v=e^{t} d v=e^{t} d t
\end{array}
\end{aligned}
$$

$e^{b}=t e^{t}-e^{t}+C \quad 1$ parameter family of solution to the ODE

Impose $y(0)=1 \Rightarrow$ when $t=0, y=1$

$$
e^{\prime}=0 e^{0}-e^{0}+C \Rightarrow e=-1+C \Rightarrow C=e+1
$$

The solution to the IVP is given by

$$
e^{y}=t e^{t}-e^{t}+e+1
$$

Caveat regarding division by $h(y)$.

Recall l that the IVP $\quad \frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0$
has two solutions

$$
y(x)=\frac{x^{4}}{16} \quad \text { and } \quad y(x)=0 .
$$

If we separate the variables

$$
\frac{1}{\sqrt{y}} d y=x d x
$$

we lose the second solution.
Why? when dividing by \sqrt{y}, we tacitly assume it's nonzero.

Solutions Defined by Integrals
Recall (Fundamental Theorem of Calculus) for g $\mathrm{cnt}^{\mathrm{t}}$.

$$
\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x) \quad \text { and } \quad \int_{x_{0}}^{x} \frac{d y}{d t} d t=y(x)-y\left(x_{0}\right)
$$

Use this to solve

$$
\begin{aligned}
& \quad \frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0} \\
& \frac{d y}{d t}=g(t) \Rightarrow \quad \int_{x_{0}}^{x} \frac{d y}{d t} d t=\int_{x_{0}}^{x} g(t) d t \\
& \Rightarrow \quad y(x)-y\left(x_{0}\right)=\int_{x_{0}}^{x} g(t) d t \\
& y(x)-y_{0}=\int_{x_{0}}^{x} g(t) d t
\end{aligned}
$$

$y(x)=y_{0}+\int_{x_{0}}^{x} g(t) d t$ is a soln to the IVP.
Let's verify: Initial condition

$$
y\left(x_{0}\right)=y_{0}+\int_{x_{0}}^{x_{0}} q_{i}(t) d t=y_{0}+0=y_{0}
$$

y satisfies the IC.

ODE:

$$
\begin{aligned}
\frac{d}{d x} y(x) & =\frac{d}{d x}\left(y_{0}+\int_{x_{0}}^{x} g(t) d t\right) \\
\frac{d y}{d x} & =\frac{d}{d x} y_{0}+\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t \\
& =0+\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=0+g(x)
\end{aligned}
$$

$\frac{d y}{d x}=g(x) \quad y$ solves the ODE too!

Example: Express the solution of the IVP in terms of an integral.

$$
\begin{gathered}
\frac{d y}{d x}=\sin \left(x^{2}\right), \quad y(\sqrt{\pi})=1 \quad \text { here } g(t)=\sin \left(t^{2}\right) \\
x_{0}=\sqrt{\pi} \text { and } y_{0}=1 \\
y(x)=y_{0}+\int_{x_{0}}^{x} \delta(t) d t
\end{gathered}
$$

Ow solution to the IVP is

$$
y(x)=1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t
$$

Section 4: First Order Equations: Linear

A first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Provided $a_{1}(x) \neq 0$ on the interval $/$ of definition of a solution, we can write the standard form of the equation

$$
P(x)=\frac{a_{0}(x)}{a_{1}(x)}
$$

$$
\frac{d y}{d x}+P(x) y=f(x) . \quad f(x)=\frac{g(x)}{a_{1}(x)}
$$

We'll be interested in equations (and intervals I) for which P and f are continuous on I.

Solutions (the General Solution)

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

It turns out the solution will always have a basic form of $y=y_{c}+y_{p}$ where

- y_{c} is called the complementary solution and would solve the problem

$$
\frac{d y}{d x}+P(x) y=0
$$

(called the associated homogeneous equation), and

- y_{p} is called the particular solution, and is heavily influenced by the function $f(x)$.

The cool thing is that our solution method will get both parts in one process-we won't get this benefit with higher order equations!

