August 22 Math 3260 sec. 57 Fall 2017

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a **column vector** or simply a **vector**.

In print, these are usually written in bold, e.g. **u**, to distinguish variables denoting vectors from those denoting scalars. Written by hand, we will use an over arrow, \vec{u} , to denote a vector.

Algebraic Operations

Let $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, and *c* be a scalar. Scalar Multiplication: The scalar multiple of \mathbf{u}

$$c\mathbf{u} = \left[egin{array}{c} cu_1 \ cu_2 \end{array}
ight]$$

Vector Addition: The sum of vectors u and v

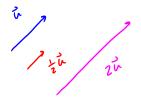
$$\mathbf{u} + \mathbf{v} = \left[\begin{array}{c} u_1 + v_1 \\ u_2 + v_2 \end{array} \right]$$

Vector Equivalence: Equality of vectors is defined by

 $\mathbf{u} = \mathbf{v}$ if and only if $u_1 = v_1$ and $u_2 = v_2$.

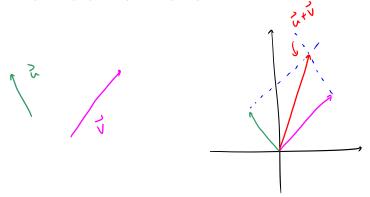
Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by an angle of 0 (if c > 0) or π (if c < 0). We'll see that $0\mathbf{u} = (0,0)$ for any vector \mathbf{u} .



Geometry of Algebra with Vectors

Vector Addition: The sum $\mathbf{u} + \mathbf{v}$ of two vectors (each different from (0,0)) is the the fourth vertex of a parallelogram whose other three vertices are (u_1, u_2) , (v_1, v_2) , and (0,0).



Vectors in \mathbb{R}^n

A vector in \mathbb{R}^3 is a 3 \times 1 column matrix. These are ordered triples. For example

$$\mathbf{a} = \begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}, \quad \text{or} \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$$

.

A vector in \mathbb{R}^n for $n \ge 2$ is a $n \times 1$ column matrix. These are ordered *n*-tuples. For example

$$\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by **0** or $\vec{0}$ and is not to be confused with the scalar 0.

E N 4 E N

Algebraic Properties on \mathbb{R}^n

For every **u**, **v**, and **w** in \mathbb{R}^n and scalars *c* and d^1

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (v) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
(ii) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
(iii) $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$ (vii) $c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$
(iv) $\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$ (viii) $1\mathbf{u} = \mathbf{u}$

¹The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

August 18, 2017 6 / 67

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$$

where the scalars c_1, \ldots, c_p are often called weights.

For example, suppose we have two vectors \mathbf{v}_1 and \mathbf{v}_2 . Some linear combinations include

$$3v_1, -2v_1 + 4v_2, \frac{1}{3}v_2 + \sqrt{2}v_1, \text{ and } 0 = 0v_1 + 0v_2.$$

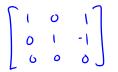
August 18, 2017

7/67

Let
$$\mathbf{a}_{1} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_{2} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$. Determine if \mathbf{b} can
be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2} .
Are there weights X_{1} and X_{2} such that $\mathbf{b} = X_{1}\mathbf{a}_{1} + X_{2}\mathbf{a}_{2}^{2}$,
 $X_{1}\mathbf{a}_{1} + X_{2}\mathbf{a}_{2} = \mathbf{b} \Rightarrow X_{1}\begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} + X_{1}\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} X_{1} \\ -2X_{1} \\ -X_{1} \end{bmatrix} + \begin{bmatrix} 2X_{2} \\ 0 \\ 2X_{2} \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -1 \end{bmatrix} + X_{1}\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -2 \\ -3 \end{bmatrix}$ implies this linear system
 $X_{1} + 3X_{2} = -2$
 $\Rightarrow \begin{bmatrix} X_{1} + 3X_{2} \\ -2X_{1} \\ -X_{1} + 2X_{2} \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -2 \\ -3 \end{bmatrix} \Rightarrow \begin{bmatrix} -2 \\ -2X_{1} \\ -X_{1} \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$

This system has augmented motivix $\begin{bmatrix} 1 & 3 & -2 \\ -2 & 0 & -2 \\ -1 & 2 & -3 \\ \hline a_1 & a_2 & 5 \end{bmatrix} = \begin{bmatrix} 2R_1 + R_2 \rightarrow R_2 \\ R_1 + R_3 \rightarrow R_3 \\ R_3 \rightarrow R_3 \end{bmatrix}$ 2 6 -4 $\begin{bmatrix} 1 & 3 & -2 \\ 0 & 6 & -6 \\ 0 & 5 & -5 \end{bmatrix} \xrightarrow{\begin{subarray}{c} \pm k_2 \to k_2 \\ \end{subarray}} \frac{\begin{subarray}{c} \pm k_2 \to k_2 \\ \end{subarray} \frac{\bed{subarray} \frac{\begin{subarray}{c} \pm k_2 \to k_2 \\ \end{subar$ $\begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} -3R_2 + R_1 \Rightarrow R_1$ The system is consistent so
yes to is a linear Contination of Q1, Q, イロン イボン イヨン イヨン ニヨー

August 18, 2017 9 / 67



[10] 01-1] From here we see the 000] weights are $\chi_1 = 1$, $\chi_2 = -1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < August 18, 2017 10/67

Some Convenient Notation

Letting
$$\mathbf{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}$, and in general $\mathbf{a}_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$, for $j = 1, ..., n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{1n} \\ a_{21} \ a_{22} \ \cdots \ a_{2n} \\ \vdots \ \vdots \ \vdots \ \vdots \\ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}.$$

Note that each vector \mathbf{a}_i is a vector in \mathbb{R}^m .

August 18, 2017 11 / 67

2

イロト イヨト イヨト イヨト

Vector and Matrix Equations

The vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}] \,. \tag{1}$$

August 18, 2017

12/67

In particular, **b** is a linear combination of the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of Span

Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_p}$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$ is denoted by

 $\text{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}=\text{Span}(S).$

It is called the subset of \mathbb{R}^n spanned by (a.k.a. generated by) the set $\{v_1, \ldots, v_p\}$.

To say that a vector **b** is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ } means that there exists a set of scalars c_1, \ldots, c_p such that **b** can be written as

 $c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p.$

August 18, 2017 13 / 67

If **b** is in Span{ $\mathbf{v}_1, \ldots, \mathbf{v}_p$ }, then $\mathbf{b} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$. From the previous result, we know this is equivalent to saying that the vector equation

$$x_1\mathbf{v}_1+\cdots+x_p\mathbf{v}_p=\mathbf{b}$$

August 18, 2017

14/67

has a solution. This is in turn the same thing as saying the linear system with augmented matrix $[\mathbf{v}_1 \cdots \mathbf{v}_p \mathbf{b}]$ is consistent.

Examples
Let
$$\mathbf{a}_1 = \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$$
, and $\mathbf{a}_2 = \begin{bmatrix} -1\\ 4\\ -2 \end{bmatrix}$.
(a) Determine if $\mathbf{b} = \begin{bmatrix} 4\\ 2\\ 1 \end{bmatrix}$ is in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.
This gives rise to the augmented matrix
 $\begin{bmatrix} 1 & -1 & 4\\ 1 & 4 & 2\\ 2 & -2 & 1 \end{bmatrix}$ $-R_1 + R_2 \Rightarrow R_3$
 $-R_1 + R_3 \Rightarrow R_3$
 $-2 = -8$
 $2 = -2 = 1$

F

August 18, 2017 15 / 67

・ロト・西ト・モン・モー シック

(b) Determine if
$$\mathbf{b} = \begin{bmatrix} 5 \\ -5 \\ 10 \end{bmatrix}$$
 is in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.

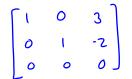
$$\begin{bmatrix} 1 & -1 & S \\ 1 & 4 & -S \\ 2 & -2 & 10 \end{bmatrix} \xrightarrow{-R_1 + R_2 - r} R_1$$

$$-2R_1 + R_3 - R_3$$

$$\begin{bmatrix} 1 & -1 & S \\ -2R_1 + R_3 - R_3 \\ -2R_1 + R_3 - R_3 \end{bmatrix}$$
we can see that \mathbf{b} is in span $\{\mathbf{a}_1, \mathbf{a}_2\}$ since the system is the system is consistent.

$$\frac{1}{5}R_2 - R_2$$
We $R_2 + R_1 - R_1$

$$\frac{1}{1677}$$



This shows the weights are $X_1 = 3$, $X_2 = -2$

< □ → < □ → < Ξ → < Ξ → < Ξ → Ξ の Q (~ August 18, 2017 19 / 67

Another Example

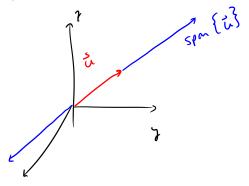
Give a geometric description of the subset of \mathbb{R}^2 given by $\operatorname{Span}\left\{ \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$. If \vec{x} is in $\operatorname{Span}\left\{ \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$ then $\vec{x} = x, \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} x_1\\0 \end{bmatrix} = (x_1, 0)$ for some real x_1 geometrically, this is the x-axisin the x_2 -plane.

Span $\{\mathbf{u}\}$ in \mathbb{R}^3

If u is any nonzero vector in $\mathbb{R}^3,$ then $\text{Span}\{u\}$ is a line through the origin parallel to u.

August 18, 2017

22/67



Span $\{u, v\}$ in \mathbb{R}^3

If **u** and **v** are nonzero, and nonparallel vectors in \mathbb{R}^3 , then Span $\{\mathbf{u}, \mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

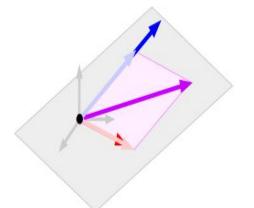


Figure: The red and blue vectors are \mathbf{u} and \mathbf{v} . The plane is the collection of all possible linear combinations. (A purple representative is shown.)

Let $\mathbf{u} = (1, 1)$ and $\mathbf{v} = (0, 2)$ in \mathbb{R}^2 . Show that for every pair of real numbers *a* and *b*, that (a, b) is in Span $\{\mathbf{u}, \mathbf{v}\}$.

We read to show that
$$x_1 \ddot{u} + x_2 \ddot{v} = \begin{bmatrix} b \end{bmatrix}$$
 is
always consident (i.e. for all a and b).
$$\begin{bmatrix} 1 & 0 & a \\ 1 & 2 & b \end{bmatrix} -R_1 + R_2 - R_2 \begin{bmatrix} 1 & 0 & a \\ 0 & 2 & b - a \end{bmatrix}$$
This is consistent.
$$\begin{bmatrix} a \\ b \end{bmatrix} = a \overline{u}_1 + \frac{b \cdot a}{2} \overline{u}_2$$

August 18, 2017 24 / 67

イロト イポト イヨト イヨト

so all [b] in R' are in span [i, v] This tells us that Span { i, v } 15 IR2.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ミ シ へ ○ August 18, 2017 25 / 67

Section 1.4: The Matrix Equation $A\mathbf{x} = \mathbf{b}$.

Definition Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ (each in \mathbb{R}^m), and let **x** be a vector in \mathbb{R}^n . Then the product of A and x, denoted by This was for Xin R

Ax

is the linear combination of the columns of A whose weights are the corresponding entries in **x**. That is

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$$

4 3 5 4 3 5 5 August 18, 2017

26/67

(Note that the result is a vector in $\mathbb{R}^{m!}$)

Find the product Ax. Simplify to the extent possible.

$$A = \begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$
$$A_{\mathbf{x}}^{*} = 2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + (-1) \begin{bmatrix} -3 \\ -3 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \\ -3 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} + \begin{bmatrix} -3 \\ -4 \end{bmatrix} = \begin{bmatrix} 2 + 0 + 3 \\ -4 - 1 - 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -9 \end{bmatrix}$$

August 18, 2017 27 / 67

<ロト <回 > < 回 > < 回 > < 回 > … 回

Find the product Ax. Simplify to the extent possible.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$
$$A \overset{\circ}{\mathbf{x}} = -3 \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -6 \\ 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 8 \\ 2 \\ 6 \end{bmatrix}$$
$$= \begin{bmatrix} -6 + 8 \\ 3 + 2 \\ 0 + 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

August 18, 2017 28 / 67

2

イロト イヨト イヨト イヨト

Write the linear system as a vector equation and then as a matrix equation of the form $A\mathbf{x} = \mathbf{b}$.

$$2x_{1} - 3x_{2} + x_{3} = 2$$

$$x_{1} + x_{2} + = -1$$
Wedue eque:
$$X_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + x_{2} \begin{bmatrix} -3 \\ 1 \end{bmatrix} + x_{3} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
Matrix eque:
$$\begin{bmatrix} 2 & -3 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

э

イロン イ理 とく ヨン イヨン

Theorem

If *A* is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and **b** is in \mathbb{R}^m , then the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

August 18, 2017 31 / 67

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is a linear combination of the columns of *A*.

In other words, the corresponding linear system is consistent if and only if **b** is in Span{ $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ }.

August 18, 2017

32/67

Characterize the set of all vectors $\mathbf{b} = (b_1, b_2, b_3)$ such that $A\mathbf{x} = \mathbf{b}$ has a solution where

$$A = \left[\begin{array}{rrrr} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{array} \right].$$

Solvability of Ax= b is the same as consistency of the system w/ organent notrix [Ab] $\begin{vmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -6 & b_2 \\ -3 & -2 & -7 & b_3 \end{vmatrix}$ $4k_1 + k_2 \rightarrow k_2$ $3k_1 + k_3 \rightarrow k_3$ 4 12 16 46, .y 2 -6 bz August 18, 2017 33/67

$$\begin{bmatrix} 1 & 3 & 4 & b_{1} \\ 0 & 14 & 10 & 4b_{1} + b_{2} \\ 0 & 7 & 5 & 3b_{1} + b_{3} \end{bmatrix} \xrightarrow{-3} -2 \xrightarrow{-7} b_{3}$$

$$\begin{bmatrix} 1 & 3 & 4 & b_{1} \\ 0 & 7 & 5 & 3b_{1} + b_{3} \\ 6 & 7 & 5 & 3b_{1} + b_{3} \\ 6 & 14 & 10 & 4b_{1} + b_{2} \end{bmatrix} \xrightarrow{-2R_{2} + R_{3} \xrightarrow{-7} R_{3}}$$

$$\begin{bmatrix} 1 & 3 & 4 & b_{1} \\ 0 & 7 & 5 & 3b_{1} + b_{3} \\ 0 & -14 & -10 & -6b_{1} - 2b_{3} \\ 0 & 14 & (0 & 4b_{1} + b_{2} \\ 0 & 0 & 0 & -2b_{1} + b_{2} - 2b_{3} \end{bmatrix}$$

August 18, 2017 34 / 67

Considency requires -26, +52 -263 =0 $b_1 = \frac{1}{2}b_2 - b_3$ 50 $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}b_2 & -b_3 \\ b_2 \\ b_3 \end{bmatrix}$ $= \begin{bmatrix} \frac{1}{2}b_2 \\ b_2 \\ 0 \end{bmatrix} + \begin{bmatrix} -b_7 \\ 0 \\ b_3 \end{bmatrix}$

August 18, 2017 35 / 67

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

$$\vec{b} = \frac{1}{2}b_2 \begin{bmatrix} 1\\2\\0 \end{bmatrix} + b_3 \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$
We can say that \vec{b} must \vec{b} in
$$Spon \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}.$$

August 18, 2017 36 / 67

・ロト・西ト・モン・モー シック