August 22 Math 3260 sec. 57 Fall 2017

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a column vector or simply a vector.

In print, these are usually written in bold, e.g. u, to distinguish variables denoting vectors from those denoting scalars. Written by hand, we will use an over arrow, \vec{u}, to denote a vector.

Algebraic Operations

Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$, and c be a scalar.
Scalar Multiplication: The scalar multiple of \mathbf{u}

$$
c \mathbf{u}=\left[\begin{array}{l}
c u_{1} \\
c u_{2}
\end{array}\right]
$$

Vector Addition: The sum of vectors \mathbf{u} and \mathbf{v}

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
$$

Vector Equivalence: Equality of vectors is defined by
$\mathbf{u}=\mathbf{v} \quad$ if and only if $u_{1}=v_{1}$ and $u_{2}=v_{2}$.

Geometry of Algebra with Vectors

Scalar Multiplication: stretches or compresses a vector but can only change direction by angle of 0 (if $c>0$) or π (if $c<0$). We'll see that $0 \mathbf{u}=(0,0)$ for any vector \mathbf{u}.

Geometry of Algebra with Vectors

Vector Addition: The sum $\mathbf{u}+\mathbf{v}$ of two vectors (each different from $(0,0)$) is the the fourth vertex of a parallelogram whose other three vertices are $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$, and (0,0).

Vectors in \mathbb{R}^{n}

A vector in \mathbb{R}^{3} is a 3×1 column matrix. These are ordered triples. For example

$$
\mathbf{a}=\left[\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right], \quad \text { or } \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

A vector in \mathbb{R}^{n} for $n \geq 2$ is a $n \times 1$ column matrix. These are ordered n-tuples. For example

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by $\mathbf{0}$ or $\overrightarrow{0}$ and is not to be confused with the scalar 0 .

Algebraic Properties on \mathbb{R}^{n}

For every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{n} and scalars c and d^{1}
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(v) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(vi) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(iii) $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$
(vii) $\quad c(d \mathbf{u})=d(c \mathbf{u})=(c d) \mathbf{u}$
(iv) $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$
(viii) $\mathbf{1 u}=\mathbf{u}$
${ }^{1}$ The term -u denotes $(-1) \mathbf{u}$.

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{p}$ in \mathbb{R}^{n} is a vector \mathbf{y} of the form

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

where the scalars c_{1}, \ldots, c_{p} are often called weights.
For example, suppose we have two vectors \mathbf{v}_{1} and \mathbf{v}_{2}. Some linear combinations include

$$
3 \mathbf{v}_{1}, \quad-2 \mathbf{v}_{1}+4 \mathbf{v}_{2}, \quad \frac{1}{3} \mathbf{v}_{2}+\sqrt{2} \mathbf{v}_{1}, \quad \text { and } \quad \mathbf{0}=0 \mathbf{v}_{1}+0 \mathbf{v}_{2}
$$

Example
Let $\mathbf{a}_{1}=\left[\begin{array}{c}1 \\ -2 \\ -1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}-2 \\ -2 \\ -3\end{array}\right]$. Determine if \mathbf{b} can be written as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2}.

Are there weights x_{1} and x_{2} such that $\vec{b}=x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}$.

$$
x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b} \Rightarrow x_{1}\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{c}
x_{1} \\
-2 x_{1} \\
x_{1}
\end{array}\right]+\left[\begin{array}{c}
3 x_{2} \\
0 \\
2 x_{2}
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right]
$$

implies this linear system

$$
\Rightarrow\left[\begin{array}{l}
x_{1}+3 x_{2} \\
-2 x_{1} \\
-x_{1}+2 x_{2}
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-2 \\
-3
\end{array}\right] \Rightarrow \begin{aligned}
& x_{1}+3 x_{2}=-2 \\
& -2 x_{1} \\
& -x_{1}+2 x_{2}=-2
\end{aligned}
$$

This system has augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 3 & -2 \\
-2 & 0 & -2 \\
-1 & 2 & -3
\end{array}\right]} \\
& 2 R_{1}+R_{2}+R_{2} \\
& R_{1}+R_{3}+R_{3} \\
& \begin{array}{ccc}
2 & 6 & -4 \\
-2 & 0 & -2
\end{array} \\
& {\left[\begin{array}{lll}
1 & 3 & -2 \\
0 & 6 & -6 \\
0 & 5 & -5
\end{array}\right] \begin{array}{l}
\frac{1}{6} R_{2} \rightarrow R_{2} \\
\text { then } \\
-S R_{2}+R_{3} \rightarrow R_{3}
\end{array}} \\
& {\left[\begin{array}{lll}
1 & 3 & -2 \\
0 & 1 & -1
\end{array}\right] \quad-3 R_{2}+R_{1} \rightarrow R_{1}}
\end{aligned}
$$

The system is consistent so yes \vec{b} is a linear combination of \vec{a}_{1}, \vec{a}_{2}

$$
\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \begin{array}{r}
\text { From here we see the } \\
\text { weights are } \\
x_{1}=1, x_{2}=-1
\end{array}
$$

Some Convenient Notation

Letting $\mathbf{a}_{1}=\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{m 1}\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{m 2}\end{array}\right]$, and in general $\mathbf{a}_{j}=\left[\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right]$, for
$j=1, \ldots, n$, we can denote the $m \times n$ matrix whose columns are these vectors by

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] .
$$

Note that each vector \mathbf{a}_{j} is a vector in \mathbb{R}^{m}.

Vector and Matrix Equations

The vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b} \tag{1}
\end{array}\right]
$$

In particular, \mathbf{b} is a linear combination of the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of Span

Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in \mathbb{R}^{n}. The set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}=\operatorname{Span}(S)
$$

It is called the subset of \mathbb{R}^{n} spanned by (a.k.a. generated by) the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

To say that a vector \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ means that there exists a set of scalars c_{1}, \ldots, c_{p} such that \mathbf{b} can be written as

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}
$$

Span

If \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$, then $\mathbf{b}=c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}$. From the previous result, we know this is equivalent to saying that the vector equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{b}
$$

has a solution. This is in turn the same thing as saying the linear system with augmented matrix $\left[\mathbf{v}_{1} \cdots \mathbf{v}_{p} \mathbf{b}\right]$ is consistent.

Examples
Let $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, and $\mathbf{a}_{2}=\left[\begin{array}{c}-1 \\ 4 \\ -2\end{array}\right]$.
(a) Determine if $\mathbf{b}=\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]$ is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

This gives rise to the augmented matrix

$$
\left[\begin{array}{ccc}
1 & -1 & 4 \\
1 & 4 & 2 \\
2 & -2 & 1
\end{array}\right] \quad \begin{aligned}
& -R_{1}+R_{2} \rightarrow R_{2} \\
& -2 R_{1}+R_{3} \rightarrow R_{3}
\end{aligned}
$$

$$
\begin{array}{rrr}
-2 & 2 & -8 \\
2 & -2 & 1
\end{array}
$$

$$
\left[\begin{array}{ccc}
1 & -1 & 4 \\
0 & 5 & -2 \\
0 & 0 & -7
\end{array}\right]
$$

The third column is a pivot column. Hence the system is inconsistent. \vec{b} is not in $\operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$
(b) Determine if $\mathbf{b}=\left[\begin{array}{c}5 \\ -5 \\ 10\end{array}\right]$ is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$.

$$
\left[\begin{array}{ccc}
1 & -1 & 5 \\
1 & 4 & -5 \\
2 & -2 & 10
\end{array}\right] \quad \begin{aligned}
& -R_{1}+R_{2} \rightarrow R_{2} \\
& -2 R_{1}+R_{3} \rightarrow R_{3}
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
1 & -1 & 5 \\
0 & 5 & -10 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\frac{1}{5} R_{2} \rightarrow R_{2}
$$

then

$$
R_{2}+R_{1} \rightarrow R_{1}
$$

we can see that \vec{b} is in $\operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$ since the system is consistent.

$$
\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

This shows the weights ave

$$
x_{1}=3, \quad x_{2}=-2
$$

Another Example
Give a geometric description of the subset of \mathbb{R}^{2} given by $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$. If \vec{x} is in $\operatorname{Spon}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ then

$$
\vec{x}=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]=\left(x_{1}, 0\right) \text { for som red } x_{1}
$$

geometrically, this is the x-axis in the $x y$-ploce.

$\operatorname{Span}\{\mathbf{u}\}$ in \mathbb{R}^{3}

If \mathbf{u} is any nonzero vector in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{u}\}$ is a line through the origin parallel to \mathbf{u}.

x

$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ in \mathbb{R}^{3}

If \mathbf{u} and \mathbf{v} are nonzero, and nonparallel vectors in \mathbb{R}^{3}, then $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

Figure: The red and blue vectors are \mathbf{u} and \mathbf{v}. The plane is the collection of all possible linear combinations. (A purple representative is shown.)

Example

Let $\mathbf{u}=(1,1)$ and $\mathbf{v}=(0,2)$ in \mathbb{R}^{2}. Show that for every pair of real numbers a and b, that (a, b) is in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
we reed to show they $x_{1} \vec{u}+x_{2} \vec{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$ is always consistent (ie. for all a oud b).

$$
\left[\begin{array}{lll}
1 & 0 & a \\
1 & 2 & b
\end{array}\right] \quad-R_{1}+R_{2} \rightarrow R_{2}\left[\begin{array}{lll}
1 & 0 & a \\
0 & 2 & b-a
\end{array}\right]
$$

This is consistent.

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=a \vec{u}_{1}+\frac{b-a}{2} \vec{u}_{2}
$$

So all $\left[\begin{array}{l}a \\ b\end{array}\right]$ in \mathbb{R}^{2} are in $\operatorname{span}\{\vec{u}, \vec{v}\}$.

This tells us that $\operatorname{Span}\{\vec{u}, \vec{v}\}$ IS \mathbb{R}^{2}.

Section 1.4: The Matrix Equation $\mathbf{A x}=\mathbf{b}$.

Definition Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}\left(\right.$ each in $\left.\mathbb{R}^{m}\right)$, and let \mathbf{x} be a vector in \mathbb{R}^{n}. Then the product of A and \mathbf{x}, denoted by

Ax

is the linear combination of the columns of A whose weights are the corresponding entries in \mathbf{x}. That is

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

(Note that the result is a vector in $\mathbb{R}^{m!}$)

Example
Find the product $\boldsymbol{A x}$. Simplify to the extent possible.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right] \quad x=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right] \\
& A \vec{x}=2\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+1\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+(-1)\left[\begin{array}{c}
-3 \\
4
\end{array}\right] \\
&= {\left[\begin{array}{c}
2 \\
-4
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+\left[\begin{array}{c}
3 \\
-4
\end{array}\right]=\left[\begin{array}{c}
2+0+3 \\
-4-1-4
\end{array}\right]=\left[\begin{array}{c}
5 \\
-9
\end{array}\right] }
\end{aligned}
$$

Example

Find the product $A \mathbf{x}$. Simplify to the extent possible.

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{c}
-3 \\
2
\end{array}\right] \\
& A \vec{x}=-3\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-6 \\
3 \\
0
\end{array}\right]+\left[\begin{array}{l}
8 \\
2 \\
6
\end{array}\right] \\
&=\left[\begin{array}{c}
-6+8 \\
3+2 \\
0+6
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]
\end{aligned}
$$

Example

Write the linear system as a vector equation and then as a matrix equation of the form $A \mathbf{x}=\mathbf{b}$.

$$
\begin{aligned}
& 2 x_{1}-3 x_{2}+x_{3}=2 \\
& x_{1}+x_{2}+=-1 \\
& \text { Vector in: } \quad x_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \\
& \text { Matrix en: } \\
& {\left[\begin{array}{ccc}
2 & -3 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]}
\end{aligned}
$$

Theorem

If A is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$, and \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right] .
$$

Corollary

The equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

In other words, the corresponding linear system is consistent if and only if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$.

Example
Characterize the set of all vectors $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ such that $A \mathbf{x}=\mathbf{b}$ has a solution where

$$
A=\left[\begin{array}{ccc}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right]
$$

Solvability of $A \vec{x}=\vec{b}$ is the same as consistences of the system $w l$ augment matrix $\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$

$$
\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
-4 & 2 & -6 & b_{2} \\
-3 & -2 & -7 & b_{3}
\end{array}\right] \begin{aligned}
& 4 R_{1}+R_{2}
\end{aligned} \rightarrow R_{2}
$$

$$
\begin{aligned}
& 3 \quad 9 \quad 123 b, \\
& {\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 14 & 10 & 4 b_{1}+b_{2} \\
0 & 7 & 5 & 3 b_{1}+b_{3}
\end{array}\right] \quad \begin{array}{lll}
-3 & -2 & -7
\end{array}} \\
& {\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 7 & 5 & 3 b_{1}+b_{3} \\
0 & 14 & 10 & 4 b_{1}+b_{2}
\end{array}\right] \quad-2 R_{2}+R_{3} \rightarrow R_{3}} \\
& {\left[\begin{array}{cccc}
1 & 3 & 4 & b_{1} \\
0 & 7 & 5 & 3 b_{1}+b_{3} \\
0 & 0 & 0 & -2 b_{1}+b_{2}-2 b_{3}
\end{array}\right]} \\
& 0 \quad-14 \quad-10 \quad-6 b_{1}-2 b_{3} \\
& 0 \quad 1410 \quad 4 b_{1}+b_{2}
\end{aligned}
$$

Consistency requires $-2 b_{1}+b_{2}-2 b_{3}=0$

$$
\begin{aligned}
b_{1}=\frac{1}{2} b_{2}-b_{3} & \text { so } \\
\vec{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] & =\left[\begin{array}{c}
\frac{1}{2} b_{2}-b_{3} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{2} b_{2} \\
b_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-b_{3} \\
0 \\
b_{3}
\end{array}\right]
\end{aligned}
$$

$$
\vec{b}=\frac{1}{2} b_{2}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+b_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

we can say tho \vec{b} must be in

$$
\operatorname{Spon}\left\{\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

