August 22 Math 3260 sec. 58 Fall 2017

Section 1.3: Vector Equations

Definition: A matrix that consists of one column is called a **column vector** or simply a **vector**.

In print, these are usually written in bold, e.g. \mathbf{u} , to distinguish variables denoting vectors from those denoting scalars. Written by hand, we will use an over arrow, \vec{u} , to denote a vector.

Algebraic Operations

Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, and c be a scalar.

Scalar Multiplication: The scalar multiple of u

$$c\mathbf{u} = \left[\begin{array}{c} cu_1 \\ cu_2 \end{array} \right].$$

Vector Addition: The sum of vectors **u** and **v**

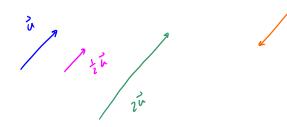
$$\mathbf{u} + \mathbf{v} = \left[\begin{array}{c} u_1 + v_1 \\ u_2 + v_2 \end{array} \right]$$

Vector Equivalence: Equality of vectors is defined by

 $\mathbf{u} = \mathbf{v}$ if and only if $u_1 = v_1$ and $u_2 = v_2$.

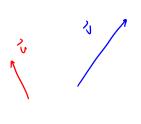
Geometry of Algebra with Vectors

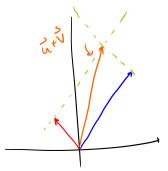
Scalar Multiplication: stretches or compresses a vector but can only change direction by an angle of 0 (if c > 0) or π (if c < 0). We'll see that $0\mathbf{u} = (0,0)$ for any vector \mathbf{u} .



Geometry of Algebra with Vectors

Vector Addition: The sum $\mathbf{u} + \mathbf{v}$ of two vectors (each different from (0,0)) is the the fourth vertex of a parallelogram whose other three vertices are (u_1,u_2) , (v_1,v_2) , and (0,0).





Vectors in \mathbb{R}^n

A vector in \mathbb{R}^3 is a 3 \times 1 column matrix. These are ordered triples. For example

$$\mathbf{a} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}, \quad \text{or} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

A vector in \mathbb{R}^n for $n \ge 2$ is a $n \times 1$ column matrix. These are ordered n-tuples. For example

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

The Zero Vector: is the vector whose entries are all zeros. It will be denoted by $\mathbf{0}$ or $\vec{0}$ and is not to be confused with the scalar 0.

Algebraic Properties on \mathbb{R}^n

For every \mathbf{u} , \mathbf{v} , and \mathbf{w} in \mathbb{R}^n and scalars c and d^1

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(v)
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(ii)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (vi) $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

$$(vi) \quad (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(iii)
$$u + 0 = 0 + u = u$$

(vii)
$$c(d\mathbf{u}) = d(c\mathbf{u}) = (cd)\mathbf{u}$$

(iv)
$$u + (-u) = -u + u = 0$$
 (viii) $1u = u$

(viii)
$$1\mathbf{u} = \mathbf{t}$$

6 / 67

¹The term $-\mathbf{u}$ denotes $(-1)\mathbf{u}$.

Definition: Linear Combination

A linear combination of vectors $\mathbf{v}_1, \dots \mathbf{v}_p$ in \mathbb{R}^n is a vector \mathbf{y} of the form

$$\mathbf{y} = c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$$

where the scalars c_1, \ldots, c_p are often called weights.

For example, suppose we have two vectors \mathbf{v}_1 and \mathbf{v}_2 . Some linear combinations include

$$3\mathbf{v}_1, \quad -2\mathbf{v}_1 + 4\mathbf{v}_2, \quad \frac{1}{3}\mathbf{v}_2 + \sqrt{2}\mathbf{v}_1, \quad \text{and} \quad \mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2.$$

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$. Determine if \mathbf{b} can

be written as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 .

$$X_{1} \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix} + X_{2} \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$$

$$\begin{bmatrix} X_{1} \\ -2X_{1} \\ -X_{1} \end{bmatrix} + \begin{bmatrix} 3X_{1} \\ 0 \\ 2X_{2} \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix} \implies \begin{bmatrix} X_{1} + 3X_{2} \\ -2X_{1} \\ -X_{1} + 2X_{2} \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ -3 \end{bmatrix}$$

This gives the Dinear system

$$X_1 + 3X_2 = \frac{1}{2}$$
 whose $\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{3}{2} \cdot \frac{2}{2}$
 $\frac{-2X_1}{-X_1 + 2X_2} = -3$ matrix is $\frac{1}{2} \cdot \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{2}{3}$
 $\frac{-2}{2} \cdot \frac{3}{4} \cdot \frac{2}{4} \cdot \frac{3}{4} \cdot \frac{3$

Going to 1ref
$$-3R_2+R_1 \rightarrow R_1$$

$$\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{bmatrix}$$
This shows that the weights are $X_1=1$ and $X_2=1$.

Some Convenient Notation

Letting
$$\mathbf{a}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}$, and in general $\mathbf{a}_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$, for

j=1,...,n, we can denote the $m \times n$ matrix whose columns are these vectors by

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] = \begin{bmatrix} a_{11} \ a_{12} \ \cdots \ a_{2n} \ \vdots \ \vdots \ \vdots \ a_{m1} \ a_{m2} \ \cdots \ a_{mn} \end{bmatrix}.$$

Note that each vector \mathbf{a}_i is a vector in \mathbb{R}^m .

Vector and Matrix Equations

The vector equation

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}]. \tag{1}$$

In particular, **b** is a linear combination of the vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ if and only if the linear system whose augmented matrix is given in (1) is consistent.

Definition of **Span**

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$ is denoted by

$$\mathsf{Span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_p\}=\mathsf{Span}(\mathcal{S}).$$

It is called the subset of \mathbb{R}^n spanned by (a.k.a. generated by) the set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

To say that a vector **b** is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ means that there exists a set of scalars c_1, \dots, c_p such that **b** can be written as

$$c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p$$
.

Span

If **b** is in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$, then $\mathbf{b} = c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p$. From the previous result, we know this is equivalent to saying that the vector equation

$$x_1\mathbf{v}_1+\cdots+x_p\mathbf{v}_p=\mathbf{b}$$

has a solution. This is in turn the same thing as saying the linear system with augmented matrix $[\mathbf{v}_1 \cdots \mathbf{v}_p \mathbf{b}]$ is consistent.

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, and $\mathbf{a}_2 = \begin{bmatrix} -1 \\ 4 \\ -2 \end{bmatrix}$.

(a) Determine if
$$\mathbf{b} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$
 is in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.

Yes if the system with augment matrix (a, a, b) is consistent, and No if its not.

$$\begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & 2 \\ 2 & -2 & 1 \end{bmatrix} \xrightarrow{-R_1 + R_2 \rightarrow R_2} R_3$$

[1 -1 4]
The lost columns a
proof column so
the system is
inconsistent.

6 is not in Spon { a, , a }

(b) Determine if
$$\mathbf{b} = \begin{bmatrix} 5 \\ -5 \\ 10 \end{bmatrix}$$
 is in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.

$$\frac{1}{5} R_2 \rightarrow R_2$$
Then $R_2 + R_1 \Rightarrow R_1$

$$\begin{bmatrix}
1 & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{bmatrix}$$

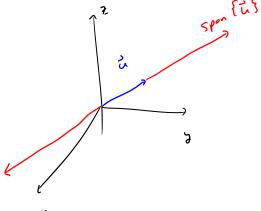
Another Example

Give a geometric description of the subset of \mathbb{R}^2 given by

Span
$$\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$
. If \vec{x} is in Span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ thun $\vec{x} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ for some scalar \vec{x} , this is $(x_1,0)$, the \vec{x} existin \vec{R}^2

Span $\{\mathbf{u}\}$ in \mathbb{R}^3

If $\mathbf u$ is any nonzero vector in $\mathbb R^3$, then Span $\{\mathbf u\}$ is a line through the origin parallel to $\mathbf u$.



Span $\{\mathbf{u}, \mathbf{v}\}$ in \mathbb{R}^3

If \mathbf{u} and \mathbf{v} are nonzero, and nonparallel vectors in \mathbb{R}^3 , then Span $\{\mathbf{u},\mathbf{v}\}$ is a plane containing the origin parallel to both vectors.

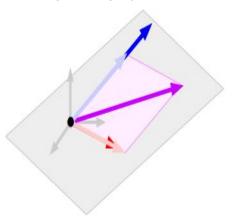


Figure: The red and blue vectors are \mathbf{u} and \mathbf{v} . The plane is the collection of all possible linear combinations. (A purple representative is shown.)

Let $\mathbf{u} = (1, 1)$ and $\mathbf{v} = (0, 2)$ in \mathbb{R}^2 . Show that for every pair of real numbers a and b, that (a, b) is in Span $\{\mathbf{u}, \mathbf{v}\}$.

So
$$(a,b)$$
 is in span $\{\vec{L},\vec{V}\}$ for all points (a,b) .

In fact
$$\begin{bmatrix} a \\ b \end{bmatrix} = a\vec{L} + \frac{b-c}{2}\vec{V}$$
This tells is that span $\{\vec{L},\vec{V}\}$ is \mathbb{R}^2 .

Section 1.4: The Matrix Equation $A\mathbf{x} = \mathbf{b}$.

Definition Let A be an $m \times n$ matrix whose columns are the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ (each in \mathbb{R}^m), and let \mathbf{x} be a vector in \mathbb{R}^n . Then the product of A and \mathbf{x} , denoted by

Ax

is the linear combination of the columns of \boldsymbol{A} whose weights are the corresponding entries in \boldsymbol{x} . That is

$$A\mathbf{x}=x_1\mathbf{a}_1+x_2\mathbf{a}_2+\cdots+x_n\mathbf{a}_n.$$

(Note that the result is a vector in \mathbb{R}^m !)

Find the product Ax. Simplify to the extent possible.

$$A = \begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & -3 \\ -1 & -1 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 & -1 \end{bmatrix} + \begin{bmatrix} -3 \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} 2 + 0 + 3 \\ -4 - 1 - 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 9 \end{bmatrix}$$

Find the product Ax. Simplify to the extent possible.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 8 \\ 2 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 6 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 6 \\ 2 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} -6 & +8 \\ 3+7 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$$

Write the linear system as a vector equation and then as a matrix equation of the form $A\mathbf{x} = \mathbf{b}$.

$$2x_{1} - 3x_{2} + x_{3} = 2$$

$$x_{1} + x_{2} + = -1$$

$$V \text{ cotor eqn:} \qquad x_{1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + x_{2} \begin{bmatrix} -3 \\ 1 \end{bmatrix} + x_{3} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$M \text{ obvive eqn:} \qquad \begin{bmatrix} 2 & -3 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ y_{3} \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Theorem

If *A* is the $m \times n$ matrix whose columns are the vectors \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n , and **b** is in \mathbb{R}^m , then the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n = \mathbf{b}$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

Corollary

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is a linear combination of the columns of A.

In other words, the corresponding linear system is consistent if and only if **b** is in Span $\{a_1, a_2, \dots, a_n\}$.

Characterize the set of all vectors $\mathbf{b} = (b_1, b_2, b_3)$ such that $A\mathbf{x} = \mathbf{b}$ has a solution where

$$A = \left[\begin{array}{rrr} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{array} \right].$$

$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ -4 & 2 & -b_1 & b_2 \\ -3 & -2 & -7 & b_3 \end{bmatrix} \qquad \begin{array}{c} 4R_1 + R_2 \rightarrow R_2 \\ 3R_1 + R_3 \rightarrow R_3 \end{array}$$

$$4R_1 + R_2 \rightarrow R_2$$

$$3R_1 + R_3 \rightarrow R_3$$

$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 7 & 5 & 3b_1 + b_3 \\ 0 & 14 & 10 & 4b_1 + b_2 \end{bmatrix} \quad \begin{array}{c} -2R_2 + R_3 + R_3 \\ 0 & -14 & -10 \\ 0 & 14 & 10 \end{array}$$

$$\begin{bmatrix} 0 & 0 & 0 & -5p^{1}+p^{2}-5p^{2} \\ 0 & 4 & 2 & 3p^{2}+p^{2} \\ 0 & 0 & 0 & -5p^{2}+p^{2} \end{bmatrix}$$

This is consistent only if
$$-2b_1 + b_2 - 2b_3 = 0$$

This requires
$$b_1 = \frac{1}{2}b_2 - b_3$$

So all such to vectors how the form

$$\frac{1}{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}b_2 - b_3 \\ b_2 \\ 6 \end{bmatrix} + \begin{bmatrix} -b_3 \\ 0 \\ b_3 \end{bmatrix}$$

$$\frac{1}{b} = \frac{1}{2}b_2 \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix} + b_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

August 18, 2017 35 / 67

All such
$$\vec{b}$$
's belong to
$$Spon \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Theorem (first in a string of equivalency theorems)

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).

- (a) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (b) Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- (c) The columns of A span \mathbb{R}^m .
- (d) A has a pivot position in every row.

(Note that statement (d) is about the *coefficient* matrix A, not about an augmented matrix $[A \ \mathbf{b}]$.)