August 24 MATH 1113 sec. 51 Fall 2018

Section 2.3: Compositions

Let f and g be functions. Then the composite function denoted

$$
f \circ g
$$

also called the composition of f and g, is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f.

The expression $f \circ g$ is read " f composed with g ", and $(f \circ g)(x)$ is read " f of g of x ".

Example $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$
Find a simplified formula for $F(x)=(f \circ g)(x)$ and determine its domain.

$$
F(x)=(f \circ g)(x)=f(g(x))=f\left(\frac{2}{x+1}\right)=\sqrt{\frac{2}{x+1}-1}
$$

we can simplify a little

$$
F(x)=\sqrt{\frac{2}{x+1}-\frac{x+1}{x+1}}=\sqrt{\frac{2-(x+1)}{x+1}}=\sqrt{\frac{2-x-1}{x+1}}
$$

$$
=\sqrt{\frac{1-x}{x+1}}
$$

Note the domain of $f(x)$ is $x \geqslant 1$ ie. $[1, \infty)$. The domain of $g(x)$ is $(-\infty,-1) \cup(-1, \infty)$.
$F(x)=\sqrt{\frac{1-x}{x+1}}$. For the domain, we require $x \neq-1$, and $\frac{1-x}{x+1} \geqslant 0$. So $1-x$ and $x+1$ have to have the sam sigh.

If $1-x \geqslant 0$ and $x+1 \geqslant 0$ then

$$
x \leq 1 \quad x \geq-1 \text {, with } x \neq-1
$$

we have $-1<x \leq 1$. If $1-x<0$ and $x+1<0$
Thun $x>1$ and $x<-1 \leftarrow$ no intersection!
The domain of fog is the interval

$$
(-1,1]
$$

Example $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$
Find a simplified formula for $H(x)=(g \circ f)(x)$, and determine its domain.

$$
\begin{aligned}
H(x) & =(g \circ f)(x)=g(f(x))=g(\sqrt{x-1}) \\
& =\frac{2}{\sqrt{x-1}+1}
\end{aligned}
$$

$H(x)=\frac{2}{\sqrt{x-1}+1}$, for the domain
we need $x-1 \geqslant 0 \Rightarrow x \geqslant 1$
And, we require $\sqrt{x-1}+1 \neq 0$

If we try to solve $\sqrt{x-1}+1=0$
we set $\sqrt{x-1}=-1$. Since $\sqrt{x-1} \geqslant 0$
for dell x, the equation has no solutions.

The only condition ir $x \geqslant 1$, so the domain of H is the interval

$$
[1, \infty)
$$

Question
The function $p(x)=\frac{1}{(x+3)^{5}}$ could be the composition $f \circ g$ of which pair of functions?
(a) $f(x)=x^{5}$, and $g(x)=\frac{1}{x+3}$

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x))=f\left(\frac{1}{x+3}\right) \\
& =\left(\frac{1}{x+3}\right)^{5}=\frac{15}{(x+3)^{5}}=\frac{1}{(x+3)^{5}}
\end{aligned}
$$

(b) $f(x)=\frac{1}{x+3}$ and $g(x)=x^{5}$
(c) $f(x)=\frac{1}{x}$ and $g(x)=(x+3)^{5} \quad(f \circ 5)(x)=f\left(x^{5}\right)=\frac{1}{x^{5}+3}$
(d) (a) and (b)
(c) $(f \circ g)(x)=f\left((x+3)^{5}\right)=\frac{1}{(x+3)^{5}}$
(e) (a) and (c) F answer

Section 2.1: Graphing Functions: Increasing,
 Decreasing

Some definitions:

Suppose that the function f is defined on an open interval l.

- f is increasing on I if for each a, b in I, if $a<b$, then $f(a)<f(b)$.
- f is decreasing on I if for each a, b in I, if $a<b$, then $f(a)>f(b)$.
- f is constant on $/$ if $f(a)=f(b)$ for each a, b in $/$.

Note that going from left to right, the graph of f

- goes upward if f is increasing
- goes downward if f is decreasing
- is horizontal if f is constant.

Example

Identify the intervals (if any) on which f is increasing, decreasing, and constant.

The domain is $[0,9]$.
f is increasing on $(0,2)$ and $(7,9)$
ie. $(0,2) \cup(7,9)$
f is deceasing on
$(3,7)$
f is constant on $(2,3)$.

Question

Suppose the function $g(x)$ is decreasing on the interval $(0,7)$. Which of the following is true?
(a) $g(1)<g(4)$
(b) $g(2)>g(3)$
(c) $g(4)<g(6)$

(d) All of the above are true.
(e) None of the above are true.

