August 24 MATH 1113 sec. 52 Fall 2018

Section 2.3: Compositions

Suppose a spherical balloon is inflated so that the radius after time *t* seconds is given by the function r(t) = 2t cm. The volume of a sphere of radius *r* is known to be $V(r) = \frac{4}{3}\pi r^3$. Note that

- *r* is a function of *t*, and
- V is a function of r, making
- ▶ *V* a function of *t* (through its dependence on *r*). In fact,

$$V(t) = V(r(t)) = \frac{4}{3}\pi(2t)^3 = \frac{32}{3}\pi t^3.$$

This is an example of a **composition** of functions.

Composition: Definition and Notation

Let f and g be functions. Then the **composite** function denoted

f ∘ *g*,

also called the **composition** of *f* and *g*, is defined by

 $(f\circ g)(x)=f(g(x)).$

The domain of $f \circ g$ is the set of all x in the domain of g such that g(x) is in the domain of f.

The expression $f \circ g$ is read "*f* composed with *g*", and $(f \circ g)(x)$ is read "*f* of *g* of *x*".

Example

Let $f(x) = \sqrt{x-1}$ and $g(x) = \frac{2}{x+1}$. Evaluate each expression if possible. (a) $(f \circ g)(1) = f\left(g(n)\right) = f\left(\frac{2}{1+1}\right) = f(1) = \sqrt{1-1} = 0$

(b)
$$(f \circ g)(0) = f\left(g(0)\right) = f\left(\frac{2}{0+1}\right) = f(z) = \sqrt{z-1} = 1$$

(c) $(g \circ f)(0) = g\left(f(0)\right) = g\left(\sqrt{0-1}\right) = g\left(\sqrt{0-1}\right)$
This is not in the domain of got or of f

Question

Let
$$f(x) = \sqrt{x-1}$$
 and $g(x) = \frac{2}{x+1}$. Evaluate $(g \circ f)(1)$ if possible.
(a) $(g \circ f)(1) = 0$
(b) $(g \circ f)(1) = 1$
(c) $(g \circ f)(1) = 2$
Evaluate $(g \circ f)(1) = \frac{2}{x+1}$. Evaluate $(g \circ f)(1)$ if possible.
 $= g(f(1)) = g(f(1)) = \frac{2}{y(0)} = \frac{2}{y(0)}$

2

4/37

August 22, 2018

(d) $(g \circ f)(1)$ is undefined

Example $f(x) = \sqrt{x-1}$ and $g(x) = \frac{2}{x+1}$

Find a simplified formula for $F(x) = (f \circ g)(x)$ and determine its domain.

$$F(x) = (f \circ g)(x) = f(g(x)) = f\left(\frac{2}{x+1}\right) = \int \frac{2}{x+1} - 1$$
$$= \int \frac{2}{x+1} - \frac{x+1}{x+1} = \int \frac{2^{-}(x+1)}{x+1} = \int \frac{2^{-}x-1}{x+1}$$

August 22, 2018 5 / 37

 $\left|F(x) = \int \frac{1-x}{x+1}\right|$ For x in the domain of F we require X+1 = 0 and $\frac{1-Y}{X+1} > 0$. So $X \neq -1$ and we need $\frac{a}{X+1} = 1 \ge 0$ lf X+1 ≥0 and 1-x≥0 X≥-1 and X ∈ 1 with X+-1 we get -1 < x ≤ 1. If x+1 ≤ 0 and 1-× ≤ 0 That X = -1 and X > 1 which has no solutions. The donain of F is the interval (-1,1]. ▲□▶▲圖▶▲≣▶▲≣▶ = 悪 - 釣�?

August 22, 2018 6 / 37

Example $f(x) = \sqrt{x-1}$ and $g(x) = \frac{2}{x+1}$

Find a simplified formula for $H(x) = (g \circ f)(x)$, and determine its domain.

$$H(x) = (gof)(x) = g(f(x)) = g(Jx-1)$$

= $\frac{2}{Jx-1} + 1$
For the domain, we need $X-1 \ge 0 \implies X \ge 1$
Le also require $Jx-1 + 1 \neq 0$.
If we conside the equation
 $Jx-1 + 1 = 0$

August 22, 2018 7 / 37

then JX-1 =- 1 But JX-1 = 0 so three are no solutions. So the domain of H is [1, AD].

Question

The function $p(x) = \frac{1}{(x+3)^5}$ could be the composition $f \circ g$ of which pair of functions?

(a)
$$f(x) = x^5$$
, and $g(x) = \frac{1}{x+3}$ $f(g(x)) = f(\frac{1}{x+3}) = (\frac{1}{x+3})^5$
(b) $f(x) = \frac{1}{x+3}$ and $g(x) = x^5$ $f(g(x)) = \frac{1}{x^5+3}$

(c)
$$f(x) = \frac{1}{x}$$
 and $g(x) = (x+3)^5$ $f(9(x)) = \frac{1}{(x+3)^5}$

(d) (a) and (b)

< ロ > < 同 > < 回 > < 回 >

Section 2.1: Graphing Functions: Increasing, Decreasing Some definitions:

Suppose that the function f is defined on an open interval I.

- f is increasing on I if for each a, b in I, if a < b, then f(a) < f(b).
- f is decreasing on I if for each a, b in I, if a < b, then f(a) > f(b).

August 22, 2018

10/37

• f is constant on I if f(a) = f(b) for each a, b in I.

Note that going from left to right, the graph of f

- goes upward if f is increasing
- goes downward if f is decreasing
- is horizontal if f is constant.

Example

Identify the intervals (if any) on which f is increasing, decreasing, and constant.

f is defined on (0,9)

$$f_{15}$$
 increasing on
(0,2) and on (7,9)
i.e. (0,2) U(7,9).

August 22, 2018 11 / 37

f is constant on (2,3).

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ シ ● ○ ○ ○ August 22, 2018 12/37