August 24 MATH 1113 sec. 52 Fall 2018

Section 2.3: Compositions

Suppose a spherical balloon is inflated so that the radius after time t seconds is given by the function $r(t)=2 t \mathrm{~cm}$. The volume of a sphere of radius r is known to be $V(r)=\frac{4}{3} \pi r^{3}$. Note that

- r is a function of t, and
- V is a function of r, making
- V a function of t (through its dependence on r). In fact,

$$
V(t)=V(r(t))=\frac{4}{3} \pi(2 t)^{3}=\frac{32}{3} \pi t^{3} .
$$

This is an example of a composition of functions.

Composition: Definition and Notation

Let f and g be functions. Then the composite function denoted

$$
f \circ g
$$

also called the composition of f and g, is defined by

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ is the set of all x in the domain of g such that $g(x)$ is in the domain of f.

The expression $f \circ g$ is read " f composed with g ", and $(f \circ g)(x)$ is read " f of g of x ".

Example
Let $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$. Evaluate each expression if possible.
(a) $(f \circ g)(1)=f(g(1))=f\left(\frac{2}{1+1}\right)=f(1)=\sqrt{1-1}=0$
(b) $(f \circ g)(0)=f(g(0))=f\left(\frac{2}{0+1}\right)=f(z)=\sqrt{z-1}=1$
(c) $(g \circ f)(0)=g(f(0))=g(\sqrt{0-1})=g(\sqrt{-1})$

This is not defined.
O is not in the domain of got os of f

Question

Let $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$. Evaluate $(g \circ f)(1)$ if possible.
(a) $(g \circ f)(1)=0$
$=g(f(1))=g(\sqrt{1-1})$
(b) $(g \circ f)(1)=1$
$=g(0)=\frac{2}{0+1}=2$
(c) $(g \circ f)(1)=2$
(d) $(g \circ f)(1)$ is undefined

Example $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$
Find a simplified formula for $F(x)=(f \circ g)(x)$ and determine its domain.

Note: The domain of f is $[1, \infty)$.

* $f(x)$ is defined if $x-1 \geqslant 0 \Rightarrow x \geqslant 1$

The domain of g is $(-\infty,-1) \cup(-1, \infty)$.

* $g(x)$ is defined if we don't divide by zero.
so we require $x+1 \neq 0 \Rightarrow x \neq-1$.

$$
\begin{aligned}
F(x)= & (f \circ g)(x)=f(g(x))=f\left(\frac{2}{x+1}\right)=\sqrt{\frac{2}{x+1}-1} \\
& =\sqrt{\frac{2}{x+1}-\frac{x+1}{x+1}}=\sqrt{\frac{2-(x+1)}{x+1}}=\sqrt{\frac{2-x-1}{x+1}}
\end{aligned}
$$

$F(x)=\sqrt{\frac{1-x}{x+1}}$ For x in the domain of F
we require $x+1 \neq 0$ and $\frac{1-x}{x+1} \geqslant 0$.
So $x \neq-1$ and we ned $\frac{2}{x+1}-1 \geqslant 0$
If $x+1 \geqslant 0$ and $1-x \geq 0$
$x \geqslant-1$ and $x \leqslant 1$ with $x \neq-1$
we get $-1<x \leq 1$. If $x+1 \leq 0$ and $1-x \leq 0$
Than $x \leq-1$ and $x \geqslant 1$ which hos no solutions.
The domain of F is the interval $(-1,1]$.

Example $f(x)=\sqrt{x-1}$ and $g(x)=\frac{2}{x+1}$
Find a simplified formula for $H(x)=(g \circ f)(x)$, and determine its domain.

$$
\begin{aligned}
H(x) & =(g \circ f)(x)=g(f(x))=g(\sqrt{x-1}) \\
& =\frac{2}{\sqrt{x-1}+1}
\end{aligned}
$$

For the domain, we reed $x-1 \geqslant 0 \Rightarrow x \geqslant 1$
we also require $\sqrt{x-1}+1 \neq 0$.
If we consider th equation

$$
\sqrt{x-1}+1=0
$$

then $\quad \sqrt{x-1}=-1$
But $\sqrt{x-1} \geqslant 0$ so there are no solutions.

So the domain of H is $[1, \infty)$.

Question

The function $p(x)=\frac{1}{(x+3)^{5}}$ could be the composition $f \circ g$ of which pair of functions?
(a) $f(x)=x^{5}$, and $g(x)=\frac{1}{x+3} \quad f(g(x))=f\left(\frac{1}{x+3}\right)=\left(\frac{1}{x+3}\right)^{5}=\frac{1}{(x+3)^{5}}$
(b) $f(x)=\frac{1}{x+3}$ and $g(x)=x^{5} \quad f(\delta(x))=\frac{1}{x^{5}+3}$
(c) $f(x)=\frac{1}{x}$ and $g(x)=(x+3)^{5}$

$$
f(g(x))=\frac{1}{(x+3)^{5}}
$$

(d) (a) and (b)
(e) (e) and (c)

Section 2.1: Graphing Functions: Increasing,
 Decreasing

Some definitions:

Suppose that the function f is defined on an open interval l.

- f is increasing on I if for each a, b in I, if $a<b$, then $f(a)<f(b)$.
- f is decreasing on I if for each a, b in I, if $a<b$, then $f(a)>f(b)$.
- f is constant on $/$ if $f(a)=f(b)$ for each a, b in $/$.

Note that going from left to right, the graph of f

- goes upward if f is increasing
- goes downward if f is decreasing
- is horizontal if f is constant.

Example

Identify the intervals (if any) on which f is increasing, decreasing, and constant.

$$
\begin{aligned}
& f \text { is defined on }(0,9) \\
& f \text { is increasing on } \\
& (0,2) \text { and on }(7,9) \\
& \text { ie. }(0,2) \cup(7,9) \text {. } \\
& f \text { is decreasing } \\
& \text { on }(3,7)
\end{aligned}
$$

f is constent on $(2,3)$.

