## August 24 Math 1190 sec. 51 Fall 2016

## Section 1.2: Limits of Functions Using Properties of Limits

Theorem: If $f(x)=A$ where $A$ is a constant, then for any real number C

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} A=A
$$

Theorem: If $f(x)=x$, then for any real number $c$

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} x=c
$$

## Additional Limit Law Theorems

Suppose

$$
\lim _{x \rightarrow c} f(x)=L, \quad \lim _{x \rightarrow c} g(x)=M, \quad \text { and } k \text { is constant. }
$$

Theorem: (Sums) $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$

Theorem: (Differences) $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$

Theorem: (Constant Multiples) $\lim _{x \rightarrow c} k f(x)=k L$

Theorem: (Products) $\lim _{x \rightarrow c} f(x) g(x)=L M$

Examples
Use the limit law theorems to evaluate if possible
(a) $\lim _{x \rightarrow 2}\left(x^{2}+3 x\right)$
we know $\quad \lim _{x \rightarrow 2} x=2$

$$
\begin{aligned}
\lim _{x \rightarrow 2}\left(x^{2}+3 x\right) & =\lim _{x \rightarrow 2} x^{2}+\lim _{x \rightarrow 2} 3 x \\
& =\left(\lim _{x \rightarrow 2} x\right) \cdot\left(\lim _{x \rightarrow 2} x\right)+3 \lim _{x \rightarrow 2} x \\
& =2 \cdot 2+3(2)=10
\end{aligned}
$$

Examples
Use the limit law theorems to evaluate if possible
(b) $\quad \lim _{x \rightarrow 0} f(x)$ where $f(x)=\left\{\begin{array}{cc}x+2, & x<0 \\ 1, & x=0 \\ 2 x-3, & x>0\end{array}\right.$

Let's look e $\lim _{x \rightarrow 0^{-}} f(x)$ and $\lim _{x \rightarrow 0^{+}} f(x)$

$$
\begin{aligned}
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x+2) & =\lim _{x \rightarrow 0^{-}} x+\lim _{x \rightarrow 0^{-}} 2 \\
& =0+2=2 \\
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}(2 x-3)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} 2 x-\lim _{x \rightarrow 0^{+}} 3 \\
& =2 \lim _{x \rightarrow 0^{+}} x-\lim _{x \rightarrow 0^{+}} 3 \\
& =2(0)-3=-3 \\
\lim _{x \rightarrow 0^{-}} f(x)=2 & \text { and } \lim _{x \rightarrow 0^{+}} f(x)=-3
\end{aligned}
$$

so $\lim f(x)$ DNE (the graph must have cjunp.)

Question
(1) $\lim _{x \rightarrow 1} f(x)$ where $f(x)= \begin{cases}x^{2}+1, & x \leq 1 \\ 3-x, & x>1\end{cases}$
(a) 4
(b) 2

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+1\right)=2
$$

(c) 1

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(3-x)=2
$$

(d) DNE

So

$$
\lim _{x \rightarrow 1} f(x)=2
$$

