August 24 Math 1190 sec. 52 Fall 2016

Section 1.2: Limits of Functions Using Properties of Limits

Theorem: If f(x) = A where A is a constant, then for any real number *c*

$$\lim_{x\to c} f(x) = \lim_{x\to c} A = A$$

Theorem: If f(x) = x, then for any real number *c*

$$\lim_{x\to c} f(x) = \lim_{x\to c} x = c$$

Additional Limit Law Theorems

Suppose

$$\lim_{x \to c} f(x) = L, \quad \lim_{x \to c} g(x) = M, \text{ and } k \text{ is constant.}$$

Theorem: (Sums)
$$\lim_{x \to c} (f(x)+g(x)) = L+M$$

Theorem: (Differences)
$$\lim_{x\to c} (f(x)-g(x)) = L-M$$

Theorem: (Constant Multiples) $\lim_{x\to c} kf(x) = kL$

Theorem: (Products) $\lim_{x\to c} f(x)g(x) = LM$

Examples

Use the limit law theorems to evaluate if possible

(b) $\lim_{x \to -2} (x+1)^2$

Note lim (x+1) = lim x + lim 1 x - - 2 x - - 2 x - - 2 = -2 + | = -1 so $\lim_{X \to -2} (X+1)^2 = \left(\lim_{X \to -2} (X+1) \right) \cdot \left(\lim_{X \to -2} (X+1) \right)$ = (-1) · (-1) = 1

Examples

Use the limit law theorems to evaluate if possible

(c)
$$\lim_{x \to 0} f(x)$$
 where $f(x) = \begin{cases} x+2, & x < 0 \\ 1, & x = 0 \\ 2x-3, & x > 0 \end{cases}$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x+2) = \lim_{x \to 0^{-}} x + \lim_{x \to 0^{-}} 2$$

= 0 + 2 = Z

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (2x-3) = 2 \lim_{x \to 0^+} x - \lim_{x \to 0^+} 3$$

= 2.0 - 3 = -3

 $\lim_{x \neq 0^+} f(x) = -3 \quad \text{and} \quad \lim_{x \neq 0^-} f(x) = 2$

lim f(x) DNE (fhor a)