August 24 Math 2306 sec 51 Fall 2015

Section 1.2: Initial Value Problems

An initial value problem consists of an ODE with additional conditions.

Solve the equation ¹

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$
 (1)

subject to the initial conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, y^{(n-1)}(x_0) = y_{n-1}.$$
 (2)

The problem (1)–(2) is called an *initial value problem* (IVP).

¹on some interval I containing x_0 .

Example

Part 1

Show that for any constant c the relation $x^2 + y^2 = c$ is an implicit solution of the ODE

$$\frac{dy}{dx} = -\frac{x}{y}$$

$$2x + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow$$
 $X + y \frac{dy}{dx} = 0$

$$\Rightarrow \quad \beta \frac{\partial x}{\partial x} = -x \qquad \Rightarrow \quad \frac{\partial x}{\partial x} = \frac{\beta}{x} \quad (\text{le } \beta \neq 0)$$

Hence if y satisfies
$$x^2 + y^2 = c$$
 it also satisfies $\frac{dy}{dx} = \frac{-x}{y}$.

Example

Part 2

Use the preceding results to find an explicit solution of the IVP

$$\frac{dy}{dx} = -\frac{x}{y}, \quad y(0) = -2$$

K near 3^{-2}

From part 1 we know that solution (5)
Sotisfy
$$\chi^2 + \chi^2 = C$$
 for (onstant C.

Impose
$$y(0) = -2$$
 $0^2 + (-2)^2 = C \Rightarrow C = 4$

so
$$\chi^2 + y^2 = 4$$
 solve for y

$$y^2 = 4 - x^2$$
 \Rightarrow $y = \sqrt{4 - x^2}$ or $y = -\sqrt{4 - x^2}$
 $y = \sqrt{4 - x^2}$ or $y = \sqrt{4 - x^2}$
 $y = \sqrt{4 - x^2}$ or $y = \sqrt{4 - x^2}$

Only the latter has the correct \$15h.

The explicit solution is y = -Jy - v

Graphical Interpretation

Figure: Each curve solves y' + 2xy = 0, $y(0) = y_0$. Each colored curve corresponds to a different value of y_0

Example

 $x = c_1 \cos(2t) + c_2 \sin(2t)$ is a 2-parameter family of solutions of the ODE x'' + 4x = 0. Find a solution of the IVP

$$x'' + 4x = 0$$
, $x\left(\frac{\pi}{2}\right) = -1$, $x'\left(\frac{\pi}{2}\right) = 4$

$$X(t) = C_1 \cos(2t) + C_2 \sin(2t)$$

$$X(\frac{\pi}{2}) = C_1 \cos(2\cdot\frac{\pi}{2}) + C_2 \sin(2\cdot\frac{\pi}{2}) = -1$$

$$C_1(-1) + C_2(0) = -1 \implies C_1 = 1$$

$$X'(t) = -2C_1 \sin(2t) + 2C_2 \cos(2t)$$

$$X'(\frac{\pi}{2}) = -2C_1 \sin(2\cdot\frac{\pi}{2}) + 2C_2 \cos(2\cdot\frac{\pi}{2}) = 4$$

$$-2C_1(0) + 2C_2(-1) = 4 \implies C_2 = -2$$
So the solution to the IVP is
$$X(t) = C_{os}(2t) - 2S_{in}(2t)$$

Existence and Uniqueness

Two important questions we can always pose (and sometimes answer) are

- (1) Does an IVP have a solution? (existence) and
- (2) If it does, is there just one? (uniqueness)

Hopefully it's obvious that we can't solve
$$\left(\frac{dy}{dx}\right)^2 + 1 = -y^2$$
.

Uniqueness

Consider the IVP

$$\frac{dy}{dx} = x\sqrt{y} \quad y(0) = 0$$

Verify that $y = \frac{x^4}{16}$ is a solution of the IVP. And find a second solution of the IVP by clever guessing.

Verity
$$y = \frac{x^{\frac{7}{16}}}{16}$$
 solves the INP:
ODE: $\frac{dy}{dx} = \frac{4x^{3}}{16} = \frac{x^{3}}{4}$ $x\sqrt{5} = x\sqrt{\frac{x^{\frac{7}{16}}}{16}} = x\left|\frac{x^{2}}{4}\right|$

$$= x\left(\frac{x^{2}}{4}\right) = \frac{x^{2}}{4}$$

Initial Condition: $y(0) = \frac{0}{16} = 0$ as required.

 $y = \frac{x^{7}}{16}$ solves the ODE and the initial condition, hence it solves the IVP.

$$\frac{dx}{dy} = x\sqrt{2}$$
 $y(0) = 0$

The constant solution y=0 also solver the IVP. Note \$\frac{1}{4x}0=0=x\overline{10}\$ and

Section 2.2: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$\frac{dy}{dx} = g(x).$$

For example, solve the ODE

$$\frac{dy}{dx} = 4e^{2x} + 1.$$

$$\frac{dy}{dx} dx = (4e^{2x} + 1) dx$$

$$y = 2e^{x} + x + C$$

$$y = 2e^{x$$

August 21, 2015

Separable Equations

Definition: The first order equation y' = f(x, y) is said to be **separable** if the right side has the form

$$f(x,y)=g(x)h(y).$$

That is, a separable equation is one that has the form

August 21, 2015 13 / 31

Determine which (if any) of the following are separable.

(a)
$$\frac{dy}{dx} = x^3y$$
 This is separable with $g(x) = x^3$ and $h(y) = y$

(b)
$$\frac{dy}{dx} = 2x + y$$
 Not separable It cont be written as function of x times function of y

(c)
$$\frac{dy}{dx} = \sin(xy^2)$$
 Not separable

(d)
$$\frac{dy}{dt} - te^{t-y} = 0$$
 This is separable with $g(t) = te^{t-y}$ and $\frac{dy}{dt} = te^{t-y} = te^{t-y}$ h(y)= e^{t}

Solving Separable Equations

Recall that from $\frac{dy}{dx} = g(x)$, we can integrate both sides

$$\int \frac{dy}{dx} \, dx = \int g(x) \, dx.$$

We'll use this observation!

Solving Separable Equations

Let's assume that it's safe to divide by h(y) and let's set p(y) = 1/h(y). We solve (usually find an implicit solution) by **separating the variables**.

$$\frac{dy}{dx} = g(x)h(y) \implies \frac{1}{h(y)}\frac{dy}{dx} = g(x)$$

$$\Rightarrow \rho(y)\frac{dy}{dx} dx = g(x) dx$$

$$\rho(y) dy = g(x) dx$$

$$\int p(y) dy = \int q(x) dx$$

where P is any anti-derivative of pro) and G is any anti-derivative of good

P(y) = G(x) + C defines a family of implicit

solutions of
$$\frac{dy}{dx} = g(x)h(y)$$