August 24 Math 2306 sec 54 Fall 2015

Section 1.2: Initial Value Problems

An initial value problem consists of an ODE with additional conditions.
Solve the equation ${ }^{1}$

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1} \tag{2}
\end{equation*}
$$

The problem (1)-(2) is called an initial value problem (IVP).

[^0]Example
Given that $y=c_{1} x+\frac{c_{2}}{x}$ is a 2-parameter family of solutions of $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$, solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0, \quad y(1)=1, \quad y^{\prime}(1)=3
$$

All solutions to the ODE are of the form

$$
y=c_{1} x+\frac{c_{2}}{x} .
$$

Now impose $y=1$ when $x=1$ and $y^{\prime}=3$ when

$$
\begin{array}{r}
x=1 \\
y^{\prime}=c_{1}-\frac{c_{2}}{x^{2}}
\end{array}
$$

$$
\begin{aligned}
& y(1)=c_{1}(1)+\frac{c_{2}}{1}=1 \Rightarrow c_{1}+c_{2}=1 \\
& y^{\prime}(1)=c_{1}-\frac{c_{2}}{1^{2}}=3 \Rightarrow c_{1}-c_{2}=3
\end{aligned}
$$

add equs

$$
\partial c_{1}=4 \Rightarrow c_{1}=2
$$

subtract egos

$$
2 c_{2}=-2 \Rightarrow c_{2}=-1
$$

S. to solve the ODE and the conditions $y(1)=1, y^{\prime}(1)=3$ the $c_{1}=2$ and $c_{2}=-1$.

The solution the the is $y=2 x-\frac{1}{x}$

Example
Part 1
Show that for any constant c the relation $x^{2}+y^{2}=c$ is an implicit solution of the ODE

$$
\frac{d y}{d x}=-\frac{x}{y}
$$

Weill use implicit differentiation to show that if y satisfies $x^{2}+y^{2}=C$, then it satisfies

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-x}{y} \\
& x^{2}+y^{2}=c \quad \Rightarrow \quad 2 x+2 y \frac{d y}{d x}=0
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow x+y \frac{d y}{d x}=0 \Rightarrow y \frac{d y}{d x}=-x \\
\frac{d y}{d x}=\frac{-x}{y}
\end{gathered}
$$

So $x^{2}+y^{2}=c$ defines an implicit soln. to the ODE for on $c \quad(c>0)$.

Example
Part 2
Use the preceding results to find an explicit solution of the IVP

$$
\frac{d y}{d x}=-\frac{x}{y}, \quad y(0)=-2
$$

Solutions to the ODE ar defined implicitly by

$$
x^{2}+y^{2}=C
$$

Impose the condition $x=0$ and $y=-2$

$$
0^{2}+(-2)^{2}=C \quad C \quad C=4
$$

$$
\begin{aligned}
x^{2}+y^{2}=4 & \Rightarrow y^{2}=4-x^{2} \\
\text { so } y & =\sqrt{4-x^{2}} \quad \text { or } y=-\sqrt{4-x^{2}}
\end{aligned}
$$

$ᄌ$ this gives

$$
y(0)=-2
$$

The explicit solution to the IV P is

$$
y=-\sqrt{4-x^{2}}
$$

Graphical Interpretation

Figure: Each curve solves $y^{\prime}+2 x y=0, y(0)=y_{0}$. Each colored curve corresponds to a different value of y_{0}

Example
$x=c_{1} \cos (2 t)+c_{2} \sin (2 t)$ is a 2-parameter family of solutions of the ODE $x^{\prime \prime}+4 x=0$. Find a solution of the IVP

$$
x^{\prime \prime}+4 x=0, \quad x\left(\frac{\pi}{2}\right)=-1, \quad x^{\prime}\left(\frac{\pi}{2}\right)=4
$$

Solutions to the ODE are

$$
\begin{aligned}
& x=c_{1} \cos (2 t)+c_{2} \sin (2 t) \\
& x^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t) \\
& x\left(\frac{\pi}{2}\right)=c_{1} \cos \left(2 \cdot \frac{\pi}{2}\right)+c_{2} \sin \left(2 \cdot \frac{\pi}{2}\right)=-1
\end{aligned}
$$

$$
\begin{gathered}
c_{1}(-1)+c_{2}(0)=-1 \Rightarrow c_{1}=1 \\
x^{\prime}\left(\frac{\pi}{2}\right)=-2 c_{1} \sin \left(2 \cdot \frac{\pi}{2}\right)+2 c_{2} \cos \left(2 \cdot \frac{\pi}{2}\right)=4 \\
-2 c_{1}(0)+2 c_{2}(-1)=4 \Rightarrow c_{2}=-2
\end{gathered}
$$

The solution to the IVP is

$$
x=\cos (2 t)-2 \sin (2 t) .
$$

Existence and Uniqueness

Two important questions we can always pose (and sometimes answer) are
(1) Does an IVP have a solution? (existence) and
(2) If it does, is there just one? (uniqueness)

Hopefully it's obvious that we can't solve $\underbrace{\left(\frac{d y}{d x}\right)^{2}+1=-\underbrace{y^{2}}_{\text {abos }} ; 1}_{\text {always }} \leq 0$

Uniqueness
Consider the IVP

$$
\frac{d y}{d x}=x \sqrt{y} \quad y(0)=0
$$

Verify that $y=\frac{x^{4}}{16}$ is a solution of the IVP. And find a second solution of the IVP by clever guessing.

We want to show that $y=\frac{x^{4}}{16}$ solves the $O D E$ and the initial condition.

$$
\text { ODE: } \quad \begin{aligned}
& y=\frac{x^{4}}{16} \Rightarrow \frac{d y}{d x}=\frac{4 x^{3}}{16}=\frac{x^{3}}{4} \\
& x \sqrt{y}=x \sqrt{\frac{x^{4}}{16}}=x\left|\frac{x^{2}}{4}\right|=x\left(\frac{x^{2}}{4}\right)=\frac{x^{3}}{4} \\
& \frac{d y}{d x}=\frac{x^{3}}{4}=x \sqrt{y}
\end{aligned}
$$

Initio condition: $y(0)=\frac{0^{4}}{16}=0$ iss $y(0)=0$
So $y=\frac{x^{4}}{16}$ is a solution to the IVP.

$$
\frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0
$$

If we guess a constant solution we get

$$
y=0
$$

note $y=0 \Rightarrow \frac{d y}{d x}=0=x \sqrt{0}$ It solves the ODE

A second solution is the trivia solution $y=0$.

Section 2.2: Separation of Variables

The simplest type of equation we could encounter would be of the form

$$
\frac{d y}{d x}=g(x)
$$

For example, solve the ODE

$$
\frac{d y}{d x}=4 e^{2 x}+1 . \quad \frac{d y}{d x} d x=\left(4 e^{2 x}+1\right) d x
$$

$$
\begin{array}{ll}
\int \frac{d y}{d x} d x=\int\left(4 e^{2 x}+1\right) d x & \text { Recall } \\
\int d y=\int\left(4 e^{2 x}+1\right) d x & d y=\frac{d y}{d x} d x \\
y=2 e^{2 x}+x+C &
\end{array}
$$

Separable Equations

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

That is, a separable equation is one that has the form

Determine which (if any) of the following are separable.
(a) $\frac{d y}{d x}=x^{3} y \quad$ It is separable with

$$
g(x)=x^{3} \text { and } h(s)=1
$$

(b) $\frac{d y}{d x}=2 x+y \quad$ This is ut separable.
(c) $\frac{d y}{d x}=\sin \left(x y^{2}\right) \quad$ This is not separable.

This is sefanoble s l
(d) $\frac{d y}{d t}-t e^{t-y}=0$

$$
\frac{d y}{d t}=t e^{t-y}=t e^{t} \cdot e^{-y}
$$

$$
\begin{aligned}
& g(t)=t e^{t} \text { and } \\
& h(y)=e^{-z}
\end{aligned}
$$

[^0]: ${ }^{1}$ on some interval $/$ containing x_{0}.

