August 24 Math 2306 sec. 56 Fall 2017

Section 4: First Order Equations: Linear

A first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Provided $a_{1}(x) \neq 0$ on the interval I of definition of a solution, we can write the standard form of the equation

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

We'll be interested in equations (and intervals I) for which P and f are continuous on I.

Solutions (the General Solution)

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

It turns out the solution will always have a basic form of $y=y_{c}+y_{p}$ where

- y_{c} is called the complementary solution and would solve the problem

$$
\frac{d y}{d x}+P(x) y=0
$$

(called the associated homogeneous equation), and

- y_{p} is called the particular solution, and is heavily influenced by the function $f(x)$.

Motivating Example

$x^{2} \frac{d y}{d x}+2 x y=e^{x}$

We solved this equation by recognizing the left side as the derivative of a product $\frac{d}{d x}\left[x^{2} y\right]$, and integrating. We found

$$
\begin{gathered}
y=\frac{C+e^{x}}{x^{2}}=\frac{C}{x^{2}}+\frac{e^{x}}{x^{2}} . \\
y_{c} \quad y_{\rho} p
\end{gathered}
$$

Derivation of Solution via Integrating Factor
Solve the equation in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

Suppose $\mu(x)$ is some non 3 en function.

$$
\mu(x) \frac{d y}{d x}+P(x) \mu(x) y=\mu(x) f(x)
$$

we want to choose μ so that the LHS is a product rule $\frac{d}{d x}[\mu y]$. we need

$$
\frac{d}{d x}[\mu y]=\mu \frac{d y}{d x}+\frac{d \mu}{d x} y=\mu \frac{d y}{d x}+\mu P y
$$

matches

Our condition on μ is

$$
\begin{aligned}
& \text { ondition on } \mu \text { is } \\
& \frac{d \mu}{d x} y=\mu P y \Rightarrow \frac{d \mu}{d x}=\mu P \text { separole! }
\end{aligned}
$$

Sepanate vaicbles

$$
\begin{aligned}
& \frac{1}{\mu} \frac{d \mu}{d x}=P(x) \\
& \int \frac{1}{\mu} \frac{d \mu}{d x} d x=\int P(x) d x \\
& \int \frac{1}{\mu} d \mu=\int P(x) d x
\end{aligned}
$$

assuring

$$
\mu>0
$$

$$
\ln \mu=\int p(x) d x
$$

Exponentiate

$$
\mu=e^{\int p(x) d x} \quad \text { colled on } \quad \text { intgrating factor }
$$

Multipl, $y^{\prime}+p_{y}=f$ by μ

$$
\begin{aligned}
& \mu y^{\prime}+{\underset{v}{n}}_{\sim}^{\sim} P_{y}^{\prime} \\
& =\mu f \\
& \frac{d}{d x}[\mu y]=\mu f \\
& \int \frac{d}{d x}[\mu y] d x=\int \mu f d x
\end{aligned}
$$

LHS is product rule

August 23, $2017 \quad 6 / 48$

$$
\mu y=\int \mu f d x
$$

Solve for y. Writing the " $+C$ "explicitly

$$
\begin{gathered}
y=\frac{1}{\mu}\left(\int \mu f d x+C\right) \\
y=e^{-\int p(x) d x}(\underbrace{\left(\int e^{\int p(x) d x} f(x) d x\right.}_{y_{p}})+C \underbrace{e^{-\int p(x) d x}}_{y_{c}}
\end{gathered}
$$

General Solution of First Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

- Integrate both sides, and solve for y.

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) f(x) d x=e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
$$

Solve the ODE
Already in standard form.
$\frac{d y}{d x}+y=3 x e^{-x}$
How, $P(x)=1$

$$
\mu=e^{\int \rho(x) d x}=e^{\int d x}=e^{x+c}=e^{x} \cdot e^{c}=A e^{x}
$$

where $A=e^{c}$. Molt by μ

$$
A e^{x}\left(\frac{d y}{d x}+y\right)=A e^{x}\left(3 x e^{-x}\right)
$$

we can concel the constant factor A.

$$
e^{x} \frac{d y}{d x}+e^{x} y=e^{x}(3) x e^{-x}=3 x
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[e^{x} y\right]=3 x \\
& \int \frac{d}{d x}\left[e^{x} y\right] d x=\int 3 x d x \\
& e^{x} y=3 \frac{x^{2}}{2}+C \\
& y=\frac{\frac{3}{2} x^{2}+C}{e^{x}} \\
& y=\frac{3}{2} x^{2} e^{-x}+C e^{-x}
\end{aligned}
$$

Solve the IVP
$x \frac{d y}{d x}-y=2 x^{2}, x>0 \quad y(1)=5 \quad$ The ODE is not in Standard form.

In stand ad form

$$
\begin{gathered}
\frac{d y}{d x}-\frac{1}{x} y=\frac{2 x^{2}}{x}=2 x \quad \text { Here } P(x)=\frac{-1}{x} \\
\mu=e^{\int P(x) d x}=e^{\int \frac{-1}{x} d x}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1} \\
\frac{1}{x} \frac{d y}{d x}-\frac{1}{x^{2}} y=\frac{1}{x}(2 x)=2
\end{gathered}
$$

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{1}{x} y\right] & =2 \\
\int \frac{d}{d x}\left[\frac{1}{x} y\right] d x & =\int 2 d x \\
\frac{1}{x} y & =2 x+C
\end{aligned}
$$

malt by $x \quad y=2 x^{2}+C x$
Impose $y(1)=5 \quad y(1)=5=2\left(1^{2}\right)+C(1)$

$$
5=2+c \quad \Rightarrow \quad c=3
$$

The soln to the IVP is

$$
y=2 x^{2}+3 x
$$

Verify
Just for giggles, lets verify that our solution $y=2 x^{2}+3 x$ really does solve the differential equation we started with

$$
\begin{aligned}
& x \frac{d y}{d x}-y=2 x^{2} \\
& y=2 x^{2}+3 x, \quad \frac{d y}{d x}=4 x+3 \\
& x \frac{d y}{d x}-y=x(4 x+3)-\left(2 x^{2}+3 x\right) \\
&=4 x^{2}+3 x-2 x^{2}-3 x \\
&=4 x^{2}-2 x^{2} \\
&=2 x^{2} \text { as expected }
\end{aligned}
$$

Steady and Transient States

For some linear equations, the term y_{c} decays as x (or t) grows. For example

$$
\begin{aligned}
& \frac{d y}{d x}+y=3 x e^{-x} \text { has solution } y=\frac{3}{2} x^{2} e^{-x}+C e^{-x} . \\
& \text { Here, } \quad y_{p}=\frac{3}{2} x^{2} e^{-x} \text { and } y_{c}=C e^{-x} .
\end{aligned}
$$

Such a decaying complementary solution is called a transient state.
The corresponding particular solution is called a steady state.

