August 24 Math 3260 sec. 57 Fall 2017

Section 1.4: The Matrix Equation Ax = b.

For $m \times n$ matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ and vector \mathbf{x} in \mathbb{R}^n , we defined the product

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$$

which is a vector in \mathbb{R}^m .

If A is the $m \times n$ matrix whose columns are the vectors \mathbf{a}_1 , \mathbf{a}_2 , \cdots , \mathbf{a}_n , and \mathbf{b} is in \mathbb{R}^m , then the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

That is, the equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is in Span{ $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ }.

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).

- (a) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (b) Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- (c) The columns of A span \mathbb{R}^m .
- (d) A has a pivot position in every row.

A Scalar Product

If **u** and **v** are vectors in \mathbb{R}^n , we define a scalar product (also called the *dot* product) via

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n$$

Computing Ax

We can use a *row-vector* dot product rule. The i^{th} entry is $A\mathbf{x}$ is the sum of products of corresponding entries from row i of A with those of \mathbf{x} . For example

$$\begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1(2) + 0(1) + (-3)(-1) \\ -2(2) + (-1)(1) + 4(-1) \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix} : \begin{bmatrix} 2(-3) + 4(2) \\ -1(-3) + 1(2) \\ 6(-3) + 3(2) \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & (x_1) + 0(x_2) + 0(x_3) \\ 0(x_1) + 1(x_2) + 0(x_3) \\ 0(x_1) + 0(x_2) + 1(x_1) \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Identity Matrix

We'll call an $n \times n$ matrix with 1's on the diagonal and 0's everywhere else—i.e. one that looks like

$$\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}$$

the $n \times n$ identity matrix and denote it by I_n . (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^n

$$I_n \mathbf{x} = \mathbf{x}$$
.

Theorem: Properties of the Matrix Product

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n , and \mathbf{c} is any scalar, then

(a)
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$
, and

(b)
$$A(c\mathbf{u}) = cA\mathbf{u}$$
.

Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be **homogeneous** if it can be written in the form

$$A\mathbf{x} = \mathbf{0}$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^m .

Theorem: A homogeneous system $A\mathbf{x} = \mathbf{0}$ always has at least one solution $\mathbf{x} = \mathbf{0}$.

The solution $\mathbf{x} = \mathbf{0}$ is called the **trivial solution**. A more interesting question for a homogeneous system is

Does it have a nontrivial solution?

9/39

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.

(a)
$$2x_1 + x_2 = 0$$
 Argusted matrix
$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & -3 & 0 \end{bmatrix}$$

$$\begin{cases} \ell_1 \leftrightarrow \ell_2 & \begin{bmatrix} 1 & -3 & 0 \\ 2 & 1 & 0 \end{bmatrix} & -2\ell_1 + \ell_2 \to \ell_2 \end{cases}$$

$$\begin{bmatrix} 1 & -3 & 0 \\ 0 & 7 & 0 \end{bmatrix} \xrightarrow{\frac{1}{7}} R_2 \rightarrow R_2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{2 \text{ Variables}} R_1 \rightarrow R_1$$

$$2 \text{ Variables}$$

$$2 \text{ pivot Glumns} \xrightarrow{2 \text{ variables}} \text{ variables}$$

This system has only the trivial solution.

Note that

$$\operatorname{rref}\left(\left[\begin{array}{ccc} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{array}\right]\right) = \left[\begin{array}{ccc} 1 & 0 & -\frac{4}{3} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right],$$

and

$$\operatorname{rref}\left(\left[\begin{array}{cccc} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{array}\right]\right) = \left[\begin{array}{cccc} 1 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

For a homogeneous system (and only a homogeneous system) row reduction performed on the coefficient matrix is sufficient to determine solutions.

August 23, 2017 12/3

(c)
$$x_1 - 2x_2 + 5x_3 = 0$$

$$\Rightarrow \quad \chi_1 = 2x_2 - 5x_3$$

$$\chi_2 - \text{free}$$

$$\chi_3 - \text{free}$$

$$All solutions χ have the form
$$\chi = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} -5x_3 \\ 0 \\ x_3 \end{bmatrix}$$$$

$$= \chi_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \chi_3 \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix} \qquad \chi_{2,1} \chi_3$$

$$= \chi_3 \mathbb{R}$$

This also says all solutions are in
$$Span \left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} -S\\1\\0 \end{bmatrix} \right\}$$
.

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x} = x_3 \mathbf{U}$. Example (c)'s solution set consisted of vector that look like $\mathbf{x} = x_2 \mathbf{u} + x_3 \mathbf{v}$. Since these are **linear combinations**, we could write the solution sets like

$$Span\{u\}$$
 or $Span\{u, v\}$.

Instead of using the variables x_2 and/or x_3 we often substitute **parameters** such as s or t.

The forms

$$\mathbf{x} = s\mathbf{u}$$
, or $\mathbf{x} = s\mathbf{u} + t\mathbf{v}$

are called parametric vector forms.

Example

The parametric vector form of the solution set of

$$x_1 - 2x_2 + 5x_3 = 0$$
 is

$$\mathbf{x} = s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}, \quad \mathsf{where} \ s, t \in \mathbb{R}.$$

Question: What geometric object is that solution set?

It's the place in
$$\mathbb{R}^3$$
 containing $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$, $\begin{bmatrix} -5 \\ 9 \end{bmatrix}$

Nonhomogeneous Systems

Find all solutions of the nonhomogeneous system of equations

$$3x_1 + 5x_2 - 4x_3 = 7$$

 $-3x_1 - 2x_2 + 4x_3 = -1$
 $6x_1 + x_2 - 8x_3 = -4$

Using technology

$$\operatorname{rref}\left(\begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & -4 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & -\frac{4}{3} & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$\chi_{1} = -\frac{4}{7}\chi_{3} = -\frac{1}{7}\chi_{3} = -\frac$$

Solutions
$$\vec{\chi} = \begin{bmatrix} \chi_1 \\ \chi_1 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -1 + \frac{4}{3}\chi_3 \\ 2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{4}{3}\chi_7 \\ 0 \\ \chi_3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + \lambda_3 \begin{bmatrix} 41_3 \\ 0 \\ 1 \end{bmatrix}$$

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

$$\mathbf{x} = \mathbf{p} + t\mathbf{v}$$

with \mathbf{p} and \mathbf{v} fixed vectors and t a varying parameter. Also note that the $t\mathbf{v}$ part is the solution to the previous example with the right hand side all zeros. This is no coincidence!

p is called a **particular solution**, and *t***v** is called a solution to the associated homogeneous equation.

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for a given \mathbf{b} . Let \mathbf{p} be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form

$$\mathbf{x} = \mathbf{p} + \mathbf{v}_h$$

where \mathbf{v}_h is any solution of the associated homogeneous equation $A\mathbf{x} = \mathbf{0}$.

We can use a row reduction technique to get all parts of the solution in one process.

Example

Find the solution set of the following system. Express the solution set in parametric vector form.

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & -2 & 4 & 2
\end{bmatrix}$$

$$x_{1} = -1$$

$$x_{2} = 2x_{2} - 4x_{4} + 2$$

$$= 2 + 2x_{3} - 4x_{4}$$

$$x_{3}, x_{4} - free$$

$$x_{3}, x_{4} - free$$

$$x_{4} = -1$$

$$x_{2} = 2x_{2} - 4x_{4} + 2$$

$$x_{3}, x_{4} - free$$

$$x_{3}, x_{4} - free$$

$$x_{3} = -1$$

$$x_{2} = 2x_{3} - 4x_{4} + 2$$

$$x_{3} = -1$$

$$x_{3} = 2x_{3} - 4x_{4} + 2$$

$$x_{3} = -1$$

$$x_{4} = -1$$

$$x_{5} = -1$$

$$x_{7} = -1$$

$$x_{7}$$