August 24 Math 3260 sec. 57 Fall 2017

Section 1.4: The Matrix Equation $A x=b$.

For $m \times n$ matrix $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ and vector \mathbf{x} in \mathbb{R}^{n}, we defined the product

$$
A \mathbf{x}=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

which is a vector in \mathbb{R}^{m}.

Theorem

If A is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{n}$, and \mathbf{b} is in \mathbb{R}^{m}, then the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right]
$$

That is, the equation $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$.

Theorem

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
(c) The columns of A span \mathbb{R}^{m}.
(d) A has a pivot position in every row.

A Scalar Product

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, we define a scalar product (also called the dot product) via

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Computing $A \mathbf{x}$

We can use a row-vector dot product rule. The $i^{\text {th }}$ entry is $A \mathbf{x}$ is the sum of products of corresponding entries from row i of A with those of x. For example

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & 0 & -3 \\
-2 & -1 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right] } & =\left[\begin{array}{c}
1(2)+0(1)+(-3)(-1) \\
-2(2)+(-1)(1)+4(-1)
\end{array}\right] \\
& =\left[\begin{array}{c}
5 \\
-9
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{l}
2(-3)+4(2) \\
-1(-3)+1(2) \\
0(-3)+3(2)
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
6
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1\left(x_{1}\right)+0\left(x_{2}\right)+0\left(x_{3}\right) \\
0\left(x_{1}\right)+1\left(x_{2}\right)+0\left(x_{3}\right) \\
0\left(x_{1}\right)+0\left(x_{2}\right)+1\left(x_{3}\right)
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}
\end{aligned}
$$

Identity Matrix

We'll call an $n \times n$ matrix with 1 's on the diagonal and 0's everywhere else-i.e. one that looks like

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

the $n \times n$ identity matrix and denote it by I_{n}. (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^{n}

$$
I_{n} \mathbf{x}=\mathbf{x}
$$

Theorem: Properties of the Matrix Product

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is any scalar, then
(a) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$, and
(b) $A(c \mathbf{u})=c A \mathbf{u}$.

Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be homogeneous if it can be written in the form

$$
A \mathbf{x}=\mathbf{0}
$$

for some $m \times n$ matrix A and where $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}.
Theorem: A homogeneous system $A \mathbf{x}=\mathbf{0}$ always has at least one solution $\mathbf{x}=\mathbf{0}$.

The solution $\mathbf{x}=\mathbf{0}$ is called the trivial solution. A more interesting question for a homogeneous system is

Does it have a nontrivial solution?

Theorem

The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.
(a) $\begin{array}{rlr}2 x_{1}+x_{2} & =0 & \text { Augmanted motrix } \\ x_{1}-3 x_{2} & =0 & {\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & -3 & 0\end{array}\right]} \\ R_{1} \leftrightarrow R_{2} & {\left[\begin{array}{lll}1 & -3 & 0 \\ 2 & 1 & 0\end{array}\right]} & -2 R_{1}+R_{2} \rightarrow R_{2}\end{array}$

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{ccc}
1 & -3 & 0 \\
0 & 7 & 0
\end{array}\right] \quad \begin{array}{l}
\frac{1}{7} R_{2} \rightarrow R_{2} \\
\text { then } 3 R_{2}+R_{1} \rightarrow R_{1} \\
0
\end{array} 1}
\end{array}\right] \begin{array}{lll}
1 & 0 & 0 \\
0
\end{array} \quad \begin{array}{l}
2 \text { variables } \\
2 \text { pivot columns }
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { no } \\
& \text { free } \\
& \text { variables }
\end{aligned}
$$

This system has only the trivial solution.
(b) $\begin{gathered}3 x_{1}+5 x_{2}-4 x_{3}=0 \\ -3 x_{1}-2 x_{2}+4 x_{3}=0 \\ 6 x_{1}+x_{2}-8 x_{3}=0\end{gathered}$

Note that

$$
\operatorname{rref}\left(\left[\begin{array}{rrr}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right]\right)=\left[\begin{array}{rrr}
1 & 0 & -\frac{4}{3} \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
\operatorname{rref}\left(\left[\begin{array}{rrrr}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right]\right)=\left[\begin{array}{rrrr}
1 & 0 & -\frac{4}{3} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

For a homogeneous system (and only a homogeneous system) row reduction performed on the coefficient matrix is sufficient to determine solutions.

$$
\left.\begin{array}{rl}
x_{1}-\frac{4}{3} x_{3} & =0 \\
x_{2} & =0 \\
0 & =0
\end{array}\right\} \Rightarrow \begin{aligned}
& x_{1}=\frac{4}{3} x_{3} \\
& x_{2}=0 \\
& x_{3}-\text { free }
\end{aligned}
$$

Solutions

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{3} x_{3} \\
0 \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
\frac{4}{3} \\
0 \\
1
\end{array}\right] \text { any } x_{3} \text { in } \mathbb{R}
$$

All solutions \vec{x} are in $\operatorname{Spon}\left\{\left[\begin{array}{c}4 / 3 \\ 0 \\ 1\end{array}\right]\right\}$.
(c) $x_{1}-2 x_{2}+5 x_{3}=0 \quad\left[\begin{array}{llll}1 & -2 & 5 & 0\end{array}\right]$

$$
\begin{aligned}
\Rightarrow \quad x_{1} & =2 x_{2}-5 x_{3} \\
x_{2} & \text { free } \\
x_{3} & \text { free }
\end{aligned}
$$

All solutions $\stackrel{\rightharpoonup}{x}$ have the form

$$
\vec{y}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 x_{2} \\
x_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-5 x_{3} \\
0 \\
x_{3}
\end{array}\right]
$$

$$
=x_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right] \quad \begin{aligned}
& x_{2,} x_{3} \\
& \text { any } \\
& \mathbb{R}
\end{aligned}
$$

This aldo says all solutions are in

$$
\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
1 \\
0
\end{array}\right]\right\} .
$$

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x}=x_{3} \boldsymbol{u}$ Example (c)'s solution set consisted of vector that look like $\mathbf{x}=x_{2} \mathbf{u}+x_{3} \mathbf{v}$. Since these are linear combinations, we could write the solution sets like

$$
\operatorname{Span}\{\mathbf{u}\} \text { or } \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}
$$

Instead of using the variables x_{2} and/or x_{3} we often substitute parameters such as s or t.
The forms

$$
\mathbf{x}=s \mathbf{u}, \quad \text { or } \quad \mathbf{x}=s \mathbf{u}+t \mathbf{v}
$$

are called parametric vector forms.

Example

The parametric vector form of the solution set of $x_{1}-2 x_{2}+5 x_{3}=0$ is

$$
\mathbf{x}=s\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right], \quad \text { where } s, t \in \mathbb{R}
$$

Question: What geometric object is that solution set?
I 's the plane in \mathbb{R}^{3} contemning $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-s \\ 0 \\ 1\end{array}\right]$ and the origin.

Nonhomogeneous Systems

Find all solutions of the nonhomogeneous system of equations

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}-4 x_{3}=7 \\
& -3 x_{1}-2 x_{2}+4 x_{3}=-1 \\
& 6 x_{1}+x_{2}-8 x_{3}=-4
\end{aligned}
$$

Using technology

$$
\left.\begin{array}{rl}
\operatorname{rref}\left(\left[\begin{array}{rrrr}
3 & 5 & -4 & 7 \\
-3 & -2 & 4 & -1 \\
6 & 1 & -8 & -4
\end{array}\right]\right)=\left[\begin{array}{rrrr}
1 & 0 & -\frac{4}{3} & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] . \\
\begin{array}{l}
x_{1}-\frac{4}{3} x_{3}
\end{array}=-1 \\
x_{2} & =2
\end{array}\right\} \Rightarrow \begin{aligned}
& x_{1}=-1+\frac{4}{3} x \\
& x_{2}=2 \\
& x_{3}-\text { free }
\end{aligned}
$$

Solutions

$$
\begin{aligned}
\vec{x} & =\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}=\left[\begin{array}{c}
-1+\frac{4}{3} x_{3} \\
2 \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{4}{3} x_{3} \\
0 \\
x_{3}
\end{array}\right]
$$

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

$$
\mathbf{x}=\mathbf{p}+t \mathbf{v}
$$

with \mathbf{p} and \mathbf{v} fixed vectors and t a varying parameter. Also note that the $t v$ part is the solution to the previous example with the right hand side all zeros. This is no coincidence!
\mathbf{p} is called a particular solution, and $t \mathbf{v}$ is called a solution to the associated homogeneous equation.

Theorem

Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for a given \mathbf{b}. Let \mathbf{p} be a solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form

$$
\mathbf{x}=\mathbf{p}+\mathbf{v}_{h}
$$

where \mathbf{v}_{h} is any solution of the associated homogeneous equation $A \mathbf{x}=\mathbf{0}$.

We can use a row reduction technique to get all parts of the solution in one process.

Example
Find the solution set of the following system. Express the solution set in parametric vector form.

$$
\left.\begin{array}{rl}
x_{1}+x_{2}-2 x_{3}+4 x_{4}=1 \\
2 x_{1}+3 x_{2} & -6 x_{3}+12 x_{4}=4 \\
2 & 3
\end{array}\right)-6
$$

$$
\begin{aligned}
& \left.\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & -2 & 4 & 2
\end{array}\right] \begin{array}{rl}
x_{1} & =-1 \\
x_{2} & =2 x_{3}-4 x_{4}+2 \\
& =2+2 x_{3}-4 x_{4} \\
x_{3}, x_{4}-f r \\
2 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
-4 \\
0 \\
1
\end{array}\right] \\
& \vec{x}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right]+\left(\begin{array}{c}
0 \\
-4 \\
0 \\
1
\end{array}\right] \quad s, t \in \mathbb{R}
\end{aligned}
$$

