August 24 Math 3260 sec. 58 Fall 2017

Section 1.4: The Matrix Equation Ax = b.

For $m \times n$ matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ and vector \mathbf{x} in \mathbb{R}^n , we defined the product

$$A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$$

which is a vector in \mathbb{R}^m .

Theorem

If *A* is the $m \times n$ matrix whose columns are the vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and **b** is in \mathbb{R}^m , then the matrix equation

$$A\mathbf{x} = \mathbf{b}$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b}].$$

That is, the equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if **b** is in Span{ $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ }.

Theorem

Let *A* be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).

イロト イヨト イヨト イヨト

August 23, 2017

3/39

- (a) For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (b) Each **b** in \mathbb{R}^m is a linear combination of the columns of *A*.
- (c) The columns of A span \mathbb{R}^m .
- (d) A has a pivot position in every row.

A Scalar Product

If **u** and **v** are vectors in \mathbb{R}^n , we define a scalar product (also called the *dot* product) via

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n$$

э

イロト イポト イヨト イヨト

Computing Ax

We can use a *row-vector* dot product rule. The i^{th} entry is $A\mathbf{x}$ is the sum of products of corresponding entries from row i of A with those of \mathbf{x} . For example

2

August 23, 2017

5/39

$$\begin{bmatrix} 1 & 0 & -3 \\ -2 & -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & (2) + O(1) + (-3) & (-1) \\ -2(2) + (-1) & (1) + 4 & (-1) \end{bmatrix}$$

$$\left[\begin{array}{rrr} 2 & 4 \\ -1 & 1 \\ 0 & 3 \end{array}\right] \left[\begin{array}{r} -3 \\ 2 \end{array}\right] =$$

$$\begin{bmatrix} 2 (-3) + 4 (2) \\ -1 (-3) + 1 (2) \\ 0 (-3) + 3 (2) \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1(x_1) + O(x_2) + O(x_3) \\ O(x_1) + I(x_2) + O(x_3) \\ O(x_1) + O(x_2) + I(x_3) \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Identity Matrix

We'll call an $n \times n$ matrix with 1's on the diagonal and 0's everywhere else—i.e. one that looks like

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

the $n \times n$ **identity** matrix and denote it by I_n . (We'll drop the subscript if it's obvious from the context.)

This matrix has the property that for each \mathbf{x} in \mathbb{R}^n

$$l_n \mathbf{x} = \mathbf{x}.$$

< ロ > < 同 > < 回 > < 回 >

August 23, 2017

7/39

Theorem: Properties of the Matrix Product

If *A* is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and *c* is any scalar, then

(a) $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$, and

(b) $A(c\mathbf{u}) = cA\mathbf{u}$.

Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be **homogeneous** if it can be written in the form

$$A\mathbf{x} = \mathbf{0}$$

for some $m \times n$ matrix A and where **0** is the zero vector in \mathbb{R}^m .

Theorem: A homogeneous system $A\mathbf{x} = \mathbf{0}$ always has at least one solution $\mathbf{x} = \mathbf{0}$.

The solution $\mathbf{x} = \mathbf{0}$ is called the **trivial solution**. A more interesting question for a homogeneous system is

Does it have a nontrivial solution?

Theorem

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the system has at least one free variable.

Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.

(a)
$$\begin{array}{l} 2x_1 + x_2 = 0 \\ x_1 - 3x_2 = 0 \end{array}$$
The organized metric $\begin{bmatrix} 2 & 1 & 0 \\ 1 & -3 & 0 \end{bmatrix}$

$$\begin{array}{l} \begin{bmatrix} 1 & -3 & 0 \\ 2 & 1 & 0 \end{bmatrix} \qquad \begin{array}{l} -2R_1 + R_2 \rightarrow R_2 \\ \begin{bmatrix} 1 & -3 & 0 \\ 0 & 7 & 0 \end{bmatrix}$$

This system has only the trivial solution.

rref
$$\begin{pmatrix} 3 \\ -3 \\ -3 \end{pmatrix}$$

and

Noto that

$$\operatorname{rref}\left(\left[\begin{array}{rrr} -3 & -2 & 4 \\ 6 & 1 & -8 \end{array}\right]\right) = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right],$$
$$\operatorname{rref}\left(\left[\begin{array}{rrr} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{array}\right]\right) = \left[\begin{array}{rrr} 1 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

 $5 -4 \rceil \setminus \begin{bmatrix} 1 & 0 & -\frac{4}{2} \end{bmatrix}$

For a homogeneous system (and only a homogeneous system) row reduction performed on the coefficient matrix is sufficient to determine solutions.

2 pivets, 3 variables ⇒ one free variable There are non trivial solutions $\begin{array}{ccc} \chi_{1} & -\frac{4}{3}\chi_{3} = 0 \\ \chi_{2} & z \end{array} \begin{array}{c} \chi_{1} = \frac{4}{3}\chi_{3} \\ \chi_{2} = 0 \end{array}$ Xa-fire be can write this as Solutions $\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} \frac{4}{3} \times 3 \\ 0 \\ X_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ where x3 is in TR

August 23, 2017 13 / 39

We can also say the solution set is

$$Spon \left\{ \begin{bmatrix} 413\\0\\1 \end{bmatrix} \right\}.$$

▲ □ ▶ ▲ 급 ▶ ▲ 直 ▶ ▲ 直 ▶ ④ Q ○
 August 23, 2017 14 / 39

(c)
$$x_1 - 2x_2 + 5x_3 = 0$$
 [1 - 2 5 0]

Solutions
$$\chi_1 = 2\chi_2 - 5\chi_3$$

 χ_2, χ_3 -free

The solution set is
Span
$$\left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} -5\\0\\1 \end{bmatrix} \right\}.$$

Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $\mathbf{x} = x_3 \mathbf{U}$ Example (c)'s solution set consisted of vector that look like $\mathbf{x} = x_2 \mathbf{u} + x_3 \mathbf{v}$. Since these are linear combinations, we could write the solution sets like

Span{ \mathbf{u} } or Span{ \mathbf{u}, \mathbf{v} }.

Instead of using the variables x_2 and/or x_3 we often substitute parameters such as s or t.

The forms

$$\mathbf{x} = s\mathbf{u}$$
, or $\mathbf{x} = s\mathbf{u} + t\mathbf{v}$

イロト 不得 トイヨト イヨト ヨー ろくの August 23, 2017

17/39

are called parametric vector forms.

Example

The **parametric vector form** of the solution set of $x_1 - 2x_2 + 5x_3 = 0$ is

$$\mathbf{x} = s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}, \text{ where } s, t \in \mathbb{R}.$$

Question: What geometric object is that solution set?

イロト 不得 トイヨト イヨト 二日

Nonhomogeneous Systems

Find all solutions of the nonhomogeneous system of equations

Using technology

$$\operatorname{rref}\left(\left[\begin{array}{ccccc} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & -4 \end{array}\right]\right) = \left[\begin{array}{ccccc} 1 & 0 & -\frac{4}{3} & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right].$$
$$X_{1} \quad -\frac{4}{3}\chi_{3} = -1$$
$$\chi_{2} \quad z = 2$$
$$\begin{cases} \Rightarrow \quad \chi_{1} = -1 + \frac{4}{3}\chi_{3} \\ \chi_{2} = 2 \\ \chi_{3} = -1 \end{array}\right]$$

August 23, 2017 19 / 39

イロト 不得 トイヨト イヨト

The solutions are

$$\begin{aligned}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\$$

August 23, 2017 20 / 39

Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

 $\mathbf{x} = \mathbf{p} + t\mathbf{v}$

with **p** and **v** fixed vectors and *t* a varying parameter. Also note that the t**v** part is the solution to the previous example with the right hand side all zeros. This is no coincidence!

p is called a **particular solution**, and *t***v** is called a solution to the associated homogeneous equation.

August 23, 2017 22 / 39

Theorem

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for a given **b**. Let **p** be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form

$$\mathbf{x} = \mathbf{p} + \mathbf{v}_h,$$

where \mathbf{v}_h is any solution of the associated homogeneous equation $A\mathbf{x} = \mathbf{0}$.

We can use a row reduction technique to get all parts of the solution in one process.

August 23, 2017

23/39

Example

Find the solution set of the following system. Express the solution set in parametric vector form.

August 23, 2017 24 / 39

э

イロト イヨト イヨト イヨト

Section 1.7: Linear Independence

We already know that a homogeneous equation $A\mathbf{x} = \mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ as

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{0}.$$

August 23, 2017

27/39

And, we know that at least one solution (the trivial one $x_1 = x_2 = \cdots = x_n = 0$ always exists.

Whether or not there is a nontrivial solution gives us a way to characterize the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$.

Definition: Linear Dependence/Independence

An indexed set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists a set of weights c_1, c_2, \dots, c_p at least one of which is nonzero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots c_p\mathbf{v}_p=\mathbf{0}.$$

(i.e. Provided the homogeneous equation possesses a nontrivial solution.)

An equation $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$, with at least one $c_i \neq 0$, is called a **linear dependence relation**.

Special Cases

A set with two vectors $\{\bm{v}_1, \bm{v}_2\}$ is linearly dependent if one is a scalar multiple of the other.

If they are linearly dependent, then then exists

$$C_1, C_2$$
 not both $3e_0$ such that
 $C_1, V_1 + (2V_2 = \vec{0})$
We can assume $C_1 \neq 0$ (also relabel V_1 and V_2)
 $C_1 V_1 = -C_2 V_2 \implies V_1 = -\frac{C_2}{C_1} V_2 = k V_2$
Where $k = -\frac{C_2}{C_1}$

August 23, 2017 29 / 39

イロト 不得 トイヨト イヨト 二日

Example

Determine if the set is linearly dependent or linearly independent.

(a)
$$\mathbf{v}_1 = \begin{bmatrix} 2\\ 4 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1\\ -2 \end{bmatrix}$ Dependent: $\vec{v}_1 = -\vec{z} \vec{v}_2$

(b)
$$\mathbf{v}_1 = \begin{bmatrix} 2\\4 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -1\\2 \end{bmatrix}$$
 Lin. independent.

<ロト<合ト<主ト<ラト<きト<きト August 23, 2017 30 / 39