Section 1.4: The Matrix Equation $Ax = b$.

For $m \times n$ matrix $A = [a_1 \ a_2 \ \cdots \ a_n]$ and vector x in \mathbb{R}^n, we defined the product

$$Ax = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

which is a vector in \mathbb{R}^m.
Theorem

If A is the $m \times n$ matrix whose columns are the vectors a_1, a_2, \ldots, a_n, and b is in \mathbb{R}^m, then the matrix equation

$$Ax = b$$

has the same solution set as the vector equation

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = b$$

which, in turn, has the same solution set as the linear system of equations whose augmented matrix is

$$[a_1 \ a_2 \ \cdots \ a_n \ b].$$

That is, the equation $Ax = b$ has a solution if and only if b is in $\text{Span}\{a_1, a_2, \ldots, a_n\}$.
Theorem

Let A be an $m \times n$ matrix. Then the following are logically equivalent (i.e. they are either all true or are all false).

(a) For each b in \mathbb{R}^m, the equation $Ax = b$ has a solution.

(b) Each b in \mathbb{R}^m is a linear combination of the columns of A.

(c) The columns of A span \mathbb{R}^m.

(d) A has a pivot position in every row.
A Scalar Product

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n, we define a scalar product (also called the *dot* product) via

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$
Computing $A\mathbf{x}$

We can use a row-vector dot product rule. The i^{th} entry is $A\mathbf{x}$ is the sum of products of corresponding entries from row i of A with those of \mathbf{x}. For example

$$
\begin{bmatrix}
1 & 0 & -3 \\
-2 & -1 & 4
\end{bmatrix}
\begin{bmatrix}
2 \\
1 \\
-1
\end{bmatrix}
=
\begin{bmatrix}
1 \cdot (2) + 0 \cdot (1) + (-3) \cdot (-1) \\
-2 \cdot (2) + (-1) \cdot (1) + 4 \cdot (-1)
\end{bmatrix}
=
\begin{bmatrix}
5 \\
-9
\end{bmatrix}
$$
\[
\begin{bmatrix}
2 & 4 \\
-1 & 1 \\
0 & 3
\end{bmatrix}
\begin{bmatrix}
-3 \\
2
\end{bmatrix}
= \begin{bmatrix}
(2)(-3) + 4(2) \\
(-1)(-3) + 1(2) \\
0(-3) + 3(2)
\end{bmatrix}
= \begin{bmatrix}
2 \\
5 \\
6
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
= \begin{bmatrix}
x_1 + 0(x_2) + 0(x_3) \\
0(x_1) + 1(x_2) + 0(x_3) \\
0(x_1) + 0(x_2) + 1(x_3)
\end{bmatrix}
= \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\]
Identity Matrix

We’ll call an \(n \times n \) matrix with 1’s on the diagonal and 0’s everywhere else—i.e. one that looks like

\[
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
\]

the \(n \times n \) identity matrix and denote it by \(I_n \). (We’ll drop the subscript if it’s obvious from the context.)

This matrix has the property that for each \(\mathbf{x} \) in \(\mathbb{R}^n \)

\[
I_n \mathbf{x} = \mathbf{x}.
\]
Theorem: Properties of the Matrix Product

If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n, and c is any scalar, then

(a) $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$, and

(b) $A(c\mathbf{u}) = cA\mathbf{u}$.
Section 1.5: Solution Sets of Linear Systems

Definition A linear system is said to be **homogeneous** if it can be written in the form

\[Ax = 0 \]

for some \(m \times n \) matrix \(A \) and where \(0 \) is the zero vector in \(\mathbb{R}^m \).

Theorem: A homogeneous system \(Ax = 0 \) always has at least one solution \(x = 0 \).

The solution \(x = 0 \) is called the **trivial solution**. A more interesting question for a homogeneous system is

Does it have a nontrivial solution?
Theorem
The homogeneous equation $Ax = 0$ has a nontrivial solution if and only if the system has at least one free variable.

Example: Determine if the homogeneous system has a nontrivial solution. Describe the solution set.

(a) $2x_1 + x_2 = 0$
$x_1 - 3x_2 = 0$

The augmented matrix is
\[
\begin{bmatrix}
2 & 1 & 0 \\
1 & -3 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & -3 & 0 \\
2 & 1 & 0
\end{bmatrix}
\]

$r_1 \leftrightarrow r_2$

$-2r_1 + r_2 \rightarrow r_2$

\[
\begin{bmatrix}
1 & -3 & 0 \\
0 & 7 & 0
\end{bmatrix}
\]
\[\frac{1}{7} R_2 \rightarrow R_2 \]

then

\[3R_2 + R_1 \rightarrow R_1 \]

\[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \]

2 variables, 2 pivots \(\Rightarrow \) no free variables.

This system has only the trivial solution.
\[3x_1 + 5x_2 - 4x_3 = 0\]
\[-3x_1 - 2x_2 + 4x_3 = 0\]
\[6x_1 + x_2 - 8x_3 = 0\]

Note that

\[
\text{rref} \left(\begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{4}{3} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},
\]

and

\[
\text{rref} \left(\begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

For a homogeneous system (and only a homogeneous system) row reduction performed on the coefficient matrix is sufficient to determine solutions.
2 pivots, 3 variables \Rightarrow one free variable

There are non-trivial solutions

\[
\begin{align*}
 x_1 & - \frac{4}{3} x_3 = 0 \\
 x_2 & = 0
\end{align*}
\]

\Rightarrow

\[
\begin{align*}
 x_1 & = \frac{4}{3} x_3 \\
 x_2 & = 0 \\
 x_3 & \text{ free}
\end{align*}
\]

we can write this as

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix}
= \begin{bmatrix}
 \frac{4}{3} x_3 \\
 0 \\
 x_3
\end{bmatrix}
= x_3 \begin{bmatrix}
 \frac{4}{3} \\
 0 \\
 1
\end{bmatrix}
\]

where x_3 is in \mathbb{R}
we can also say the solution set is

\[
\text{Span } \left\{ \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} \right\}.
\]
(c) \[x_1 - 2x_2 + 5x_3 = 0 \]

\[
\begin{bmatrix} 1 & -2 & \leq & 0 \end{bmatrix}
\]

Solutions:
\[x_1 = 2x_2 - 5x_3 \]
\[x_2, x_3 \text{ - free} \]

All solutions \(\mathbf{x} \) have the form

\[
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_2 - 5x_3 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_2 \\ x_2 \\ 0 \end{bmatrix} + \begin{bmatrix} -5x_3 \\ 0 \\ x_3 \end{bmatrix}
\]

\[
= x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}
\]
The solution set is

$$\text{Span} \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix} \right\}.$$
Parametric Vector Form of a Solution Set

Example (b) had a solution set consisting of vectors of the form $x = x_3 \mathbf{u}$. Example (c)'s solution set consisted of vectors that look like $x = x_2 \mathbf{u} + x_3 \mathbf{v}$. Since these are linear combinations, we could write the solution sets like

$$\text{Span}\{\mathbf{u}\} \quad \text{or} \quad \text{Span}\{\mathbf{u}, \mathbf{v}\}.$$

Instead of using the variables x_2 and/or x_3 we often substitute parameters such as s or t. The forms

$$x = s \mathbf{u}, \quad \text{or} \quad x = s \mathbf{u} + t \mathbf{v}$$

are called parametric vector forms.
Example

The parametric vector form of the solution set of
\[x_1 - 2x_2 + 5x_3 = 0 \]
is
\[
\mathbf{x} = s \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 0 \\ 1 \end{bmatrix}, \quad \text{where } s, t \in \mathbb{R}.
\]

Question: What geometric object is that solution set?

It's a plane in \(\mathbb{R}^3 \) containing \((2,1,0), (-5,0,1)\) and the origin.
Nonhomogeneous Systems

Find all solutions of the nonhomogeneous system of equations

\[
\begin{align*}
3x_1 &+ 5x_2 - 4x_3 = 7 \\
-3x_1 &- 2x_2 + 4x_3 = -1 \\
6x_1 &+ x_2 - 8x_3 = -4
\end{align*}
\]

Using technology

\[
\text{rref}\left(\begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & -4 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & -\frac{4}{3} & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

\[
\begin{align*}
x_1 - \frac{4}{3}x_3 &= -1 \\
x_2 &= 2 \\
x_3 &= \text{free}
\end{align*}
\]

\[
\begin{align*}
x_1 &= -1 + \frac{4}{3}x_3 \\
x_2 &= 2 \\
x_3 &= \text{free}
\end{align*}
\]
The solutions are

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix} = \begin{bmatrix}
 -1 + \frac{4}{3} x_3 \\
 2 \\
 x_3
\end{bmatrix} = \begin{bmatrix}
 -1 \\
 2 \\
 0
\end{bmatrix} + \begin{bmatrix}
 \frac{4}{3} x_3 \\
 0 \\
 x_3
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 -1 \\
 2 \\
 0
\end{bmatrix} + x_3 \begin{bmatrix}
 \frac{4}{3} \\
 0 \\
 1
\end{bmatrix}
\]

This is the line span \{"\begin{bmatrix} 0 \\
 1 \end{bmatrix}\}\) translated to pass through \(\begin{bmatrix}
 -1 \\
 2 \\
 0
\end{bmatrix}\).
Solutions of Nonhomogeneous Systems

Note that the solution in this example has the form

\[x = p + tv \]

with \(p \) and \(v \) fixed vectors and \(t \) a varying parameter. Also note that the \(tv \) part is the solution to the previous example with the right hand side all zeros. This is no coincidence!

\(p \) is called a \textbf{particular solution}, and \(tv \) is called a solution to the associated homogeneous equation.
Theorem

Suppose the equation $Ax = b$ is consistent for a given b. Let p be a solution. Then the solution set of $Ax = b$ is the set of all vectors of the form

$$x = p + v_h,$$

where v_h is any solution of the associated homogeneous equation $Ax = 0$.

We can use a row reduction technique to get all parts of the solution in one process.
Example

Find the solution set of the following system. Express the solution set in parametric vector form.

\[\begin{align*}
 x_1 &+ x_2 - 2x_3 + 4x_4 = 1 \\
 2x_1 &+ 3x_2 - 6x_3 + 12x_4 = 4
\end{align*} \]

\[
\begin{bmatrix}
 1 & 1 & -2 & 4 & 1 \\
 2 & 3 & -6 & 12 & 4
\end{bmatrix}
\]

\[
\begin{bmatrix}
 1 & 1 & -2 & 4 & 1 \\
 0 & 1 & -2 & 4 & 2
\end{bmatrix}
\]

-2R_1 + R_2 \rightarrow R_2

\[
\begin{bmatrix}
 1 & 1 & -2 & 4 & 1 \\
 0 & 1 & -2 & 4 & 2
\end{bmatrix}
\]

-2R_1 + R_2 \rightarrow R_2

\[
\begin{bmatrix}
 1 & 1 & -2 & 4 & 1 \\
 0 & 1 & -2 & 4 & 2
\end{bmatrix}
\]

- R_2 + R_1 \rightarrow R_1
\[
\begin{bmatrix}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & -2 & 0 & 2
\end{bmatrix}
\]

\[
x_1 = -1
\]

\[
x_2 = 2 + 2x_3 - 4x_4
\]

\[
x_3, x_4 \text{ free}
\]

The solutions

\[
\hat{x} = \begin{bmatrix}
-1 \\
2 \\
0 \\
0
\end{bmatrix} + x_3 \begin{bmatrix}
0 \\
2 \\
1 \\
0
\end{bmatrix} + x_4 \begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}
\]

\[
\hat{\chi} = \begin{bmatrix}
-1 \\
2 \\
0 \\
0
\end{bmatrix} + s \begin{bmatrix}
0 \\
2 \\
1 \\
0
\end{bmatrix} + \ell \begin{bmatrix}
0 \\
-4 \\
0 \\
1
\end{bmatrix}, \quad s, \ell \text{ in } \mathbb{R}
\]
Section 1.7: Linear Independence

We already know that a homogeneous equation $Ax = 0$ can be thought of as an equation in the column vectors of the matrix $A = [a_1 \ a_2 \ \cdots \ a_n]$ as

$$x_1a_1 + x_2a_2 + \cdots x_na_n = 0.$$

And, we know that at least one solution (the trivial one $x_1 = x_2 = \cdots = x_n = 0$) always exists.

Whether or not there is a nontrivial solution gives us a way to characterize the vectors a_1, \ldots, a_n.
Definition: Linear Dependence/Independence

An indexed set of vectors \(\{v_1, v_2, \ldots, v_p\} \) in \(\mathbb{R}^n \) is said to be **linearly independent** if the vector equation

\[
x_1v_1 + x_2v_2 + \cdots + x_pv_p = 0
\]

has only the trivial solution.

The set \(\{v_1, v_2, \ldots, v_p\} \) is said to be **linearly dependent** if there exists a set of weights \(c_1, c_2, \ldots, c_p \) at least one of which is nonzero such that

\[
c_1v_1 + c_2v_2 + \cdots + c_pv_p = 0.
\]

(i.e. Provided the homogeneous equation possesses a nontrivial solution.)

An equation \(c_1v_1 + c_2v_2 + \cdots + c_pv_p = 0 \), with at least one \(c_i \neq 0 \), is called a **linear dependence relation**.
Special Cases

A set with two vectors \(\{ \mathbf{v}_1, \mathbf{v}_2 \} \) is linearly dependent if one is a scalar multiple of the other.

If they are linearly dependent, then there exists \(c_1, c_2 \) not both zero such that

\[
c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{0}
\]

We can assume \(c_1 \neq 0 \) (else relabel \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \))

\[
c_1 \mathbf{v}_1 = -c_2 \mathbf{v}_2 \quad \Rightarrow \quad \mathbf{v}_1 = -\frac{c_2}{c_1} \mathbf{v}_2 = k \mathbf{v}_2
\]

where \(k = -\frac{c_2}{c_1} \)
Example

Determine if the set is linearly dependent or linearly independent.

(a) \(\mathbf{v}_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ -2 \end{bmatrix} \)

Dependent: \(\mathbf{v}_1 = -2 \mathbf{v}_2 \)

(b) \(\mathbf{v}_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \)

Lin. independent.