August 26 Math 1190 sec. 51 Fall 2016

Section 1.2: Limits of Functions Using Properties of Limits

Theorem: If $f(x)=A$ where A is a constant, then for any real number C

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} A=A
$$

Theorem: If $f(x)=x$, then for any real number c

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} x=c
$$

Additional Limit Law Theorems

Suppose

$$
\lim _{x \rightarrow c} f(x)=L, \quad \lim _{x \rightarrow c} g(x)=M, \quad \text { and } k \text { is constant. }
$$

Theorem: (Sums) $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$

Theorem: (Differences) $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$

Theorem: (Constant Multiples) $\lim _{x \rightarrow c} k f(x)=k L$

Theorem: (Products) $\lim _{x \rightarrow c} f(x) g(x)=L M$

Additional Limit Law Theorems

Suppose $\lim _{x \rightarrow c} f(x)=L$ and n is a positive integer.

Theorem: (Power) $\quad \lim _{x \rightarrow c}(f(x))^{n}=L^{n}$
Note in particular that this tells us that $\lim _{x \rightarrow c} x^{n}=c^{n}$.
Theorem: (Root) $\quad \lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{L} \quad$ (if this is defined)

Combining the sum, difference, constant multiple and power laws: Theorem: If $P(x)$ is a polynomial, then

$$
\lim _{x \rightarrow c} P(x)=P(c) .
$$

Question

(1) $\lim _{x \rightarrow 2}\left(3 x^{2}-4 x+7\right)=$ If
(a) 7
(b) DNE
(c) -11
(d) 11

$$
\begin{aligned}
P(x) & =3 x^{2}-4 x+7 \\
P(2) & =3(2)^{2}-4(2)+7 \\
& =12-8+7=11
\end{aligned}
$$

Question
(2) Suppose that we have determined that $\lim _{x \rightarrow 7} f(x)=13$ True or False: It is acceptable to write this as

$$
" \lim _{x \rightarrow 7}=13 "
$$

$$
\cdots=2^{1 "}
$$

False! $\lim _{x \rightarrow c}$ must be followed by an expression $f(x)$.

Additional Limit Law Theorems

$$
\text { Suppose } \quad \lim _{x \rightarrow c} f(x)=L, \quad \lim _{x \rightarrow c} g(x)=M \text { and } \quad M \neq 0
$$

Theorem: (Quotient) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}$

Combined with our result for polynomials:
Theorem: If $R(x)=\frac{p(x)}{q(x)}$ is a rational function, and c is in the domain of R, then

$$
\lim _{x \rightarrow c} R(x)=R(c) .
$$

Example
Evaluate $\lim _{x \rightarrow 2} \frac{x^{2}+5}{x^{2}+x-1}$
$R(x)=\frac{x^{2}+5}{x^{2}+x-1}$ is rational.
also $2^{2}+2-1=S \neq 0$ so 2 is in the domain of R.
So $\lim _{x \rightarrow 2} \frac{x^{2}+5}{x^{2}+x-1}=\frac{2^{2}+5}{2^{2}+2-1}=\frac{9}{5}$

Evaluate $\lim _{x \rightarrow 1} \frac{\sqrt{x+1}}{x+5}$

$$
r^{t h} \cos ^{2} \text { property }
$$

Note $\lim _{x \rightarrow 1} \sqrt{x+1}=\sqrt{\lim _{x \rightarrow 1}(x+1)}=\sqrt{\lim _{x \rightarrow 1} x+\lim _{x \rightarrow 1} 1}$

$$
=\sqrt{1+1}=\sqrt{2}
$$

$$
\lim _{x \rightarrow 1}(x+5)=1+5=6
$$

So $\lim _{x \rightarrow 1} \frac{\sqrt{x+1}}{x+5}=\frac{\sqrt{2}}{6}$

Additional Techniques: When direct laws fail
Evaluate if possible $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}$
If $R(x)=\frac{x^{2}-x-2}{x^{2}-4}$ then 2 is not in the domain of R.
Since $x^{2}-x-2$ also goes to zeno as $x \rightarrow 2$, there must be a common factor $(x-2)$.
we can use som algebra

$$
\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{(x-2)(x+2)}
$$

$$
=\lim _{x \rightarrow 2} \frac{x+1}{x+2}=\frac{3}{4}
$$

Additional Techniques: When direct laws fail
Evaluate if possible $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}$
Both numenator and denominator take the value zero if $x=1$. This does indicate that $x-1$ is a common "factor." well rationdize.

The conjugate of $\sqrt{x+3}-2$ is $\sqrt{x+3}+2$

$$
\begin{gathered}
\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}: \lim _{x \rightarrow 1}\left(\frac{\sqrt{x+3}-2}{x-1}\right) \cdot\left(\frac{\sqrt{x+3}+2}{\sqrt{x+3}+2}\right) \\
\text { multiply by } 1
\end{gathered}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{(\sqrt{x+3})^{2}-2 \sqrt{x+3}+2 \sqrt{x+3}-2^{2}}{(x-1)(\sqrt{x+3}+2)} \\
& =\lim _{x \rightarrow 1} \frac{x+3-4}{(x-1)(\sqrt{x+3}+2)}=x-1=1(x-1) \\
& =\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(\sqrt{x+3}+2)}= \\
& =\lim _{x \rightarrow 1} \frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}=\frac{1}{2+2}=\frac{1}{4}
\end{aligned}
$$

Question

Evaluate if possible $\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{x}-\sqrt{2}}$
(a) $\frac{1}{\sqrt{2}}$

$$
=\lim _{x \rightarrow 2}\left(\frac{x-2}{\sqrt{x}-\sqrt{2}}\right) \cdot \frac{\sqrt{x}+\sqrt{2}}{\sqrt{x}+\sqrt{2}}
$$

(b) $\sqrt{2}$
(c) DNE

$$
=\lim _{x \rightarrow 2} \frac{(x-2)(\sqrt{x}+\sqrt{2})}{x-2}
$$

$$
=\lim _{x \rightarrow 2}(\sqrt{x}+\sqrt{2})=\sqrt{2}+\sqrt{2}=2 \sqrt{2}
$$

Observations

In limit taking, the form " $\frac{0}{0}$ " sometimes appears. This is called an indeterminate form. Standard strategies are
(1) Try to factor the numerator and denominator to see if a common factor- $(x-c)$-can be cancelled.
(2) If dealing with roots, try rationalizing to reveal a common factor.

The form
" nonzero constant,
is not indeterminate. It is undefined. When it appears, the limit doesn't exist.

Example

Let $f(x)=x^{3}+2 x$. Determine the difference quotient

$$
\frac{f(x+h)-f(x)}{h} \text { for } h \neq 0
$$

Next, take the limit as $h \rightarrow 0$ of this difference quotient.

$$
\begin{aligned}
& f(x)=x^{3}+2 x \\
& \begin{aligned}
f(x+h) & =(x+h)^{3}+2(x+h) \\
& =x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+2 x+2 h \\
\frac{f(x+h)-f(x)}{h} & =\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+2 x+2 h-\left(x^{3}+2 x\right)}{h}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3 x^{2} h+3 x h^{2}+h^{3}+2 h}{h} \\
& =\frac{h\left(3 x^{2}+3 x h+h^{2}+2\right)}{h} \\
& =3 x^{2}+3 x h+h^{2}+2
\end{aligned}
$$

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}+2\right)=
$$

$$
\begin{aligned}
& =3 x^{2}+3 x \cdot 0+0^{2}+2 \\
& =3 x^{2}+2
\end{aligned}
$$

