August 26 Math 1190 sec. 51 Fall 2016

Section 1.2: Limits of Functions Using Properties of Limits

Theorem: If f(x) = A where A is a constant, then for any real number *c*

$$\lim_{x\to c} f(x) = \lim_{x\to c} A = A$$

Theorem: If f(x) = x, then for any real number *c*

$$\lim_{x\to c} f(x) = \lim_{x\to c} x = c$$

Additional Limit Law Theorems

Suppose

$$\lim_{x \to c} f(x) = L, \quad \lim_{x \to c} g(x) = M, \text{ and } k \text{ is constant.}$$

Theorem: (Sums)
$$\lim_{x\to c} (f(x)+g(x)) = L+M$$

Theorem: (Differences)
$$\lim_{x\to c} (f(x)-g(x)) = L-M$$

Theorem: (Constant Multiples) $\lim_{x\to c} kf(x) = kL$

Theorem: (Products) $\lim_{x\to c} f(x)g(x) = LM$

Additional Limit Law Theorems

Suppose $\lim_{x\to c} f(x) = L$ and *n* is a positive integer.

Theorem: (Power) $\lim_{x\to c} (f(x))^n = L^n$

Note in particular that this tells us that $\lim_{x\to c} x^n = c^n$.

Theorem: (Root) $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L}$ (if this is defined)

Combining the sum, difference, constant multiple and power laws: **Theorem:** If P(x) is a polynomial, then

$$\lim_{x\to c} P(x) = P(c).$$

Question

(1)
$$\lim_{x\to 2}(3x^2-4x+7) =$$

i f $P(x) = 3x^{2} - 4x + 7$ $P(z) = 3(z^{2} - 4(z) + 7$ = 12 - 8 + 7 = 11

Question

(2) Suppose that we have determined that $\lim_{x \to 7} f(x) = 13$. **True or False:** It is acceptable to write this as " $\lim_{x \to 7} = 13$ "
" $\int = 2$ " Folse! lim must be followed by an expression f(x).

Additional Limit Law Theorems

Suppose
$$\lim_{x\to c} f(x) = L$$
, $\lim_{x\to c} g(x) = M$ and $M \neq 0$

Theorem: (Quotient) $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}$

Combined with our result for polynomials:

Theorem: If $R(x) = \frac{p(x)}{q(x)}$ is a rational function, and *c* is in the domain of *R*, then

$$\lim_{x\to c} R(x) = R(c).$$

Example

Evaluate $\lim_{x \to 2} \frac{x^2 + 5}{x^2 + x - 1}$ $R(x) = \frac{x^2 + S}{x^2 + x - 1}$ is rational. also $2^2+2-1=5\pm0$ so 2 is in the domain of R. So $p_{1} = \frac{x^2 + 5}{x^2 + x - 1} = \frac{2^2 + 5}{2^2 + 2 - 1} = \frac{9}{5}$

Evaluate
$$\lim_{x \to 1} \frac{\sqrt{x+1}}{x+5}$$

$$\lim_{x \to 1} \sqrt{x+1}$$

$$\lim_{x \to 1} \sqrt{x+1} = \sqrt{\lim_{x \to 1} (x+1)} = \sqrt{\lim_{x \to 1} x + \lim_{x \to 1} 1}$$

$$= \sqrt{1+1} = \sqrt{2}$$

$$\lim_{x \to 1} (x+5) = 1+5 = 6$$

$$\frac{1}{x \rightarrow 1} \frac{1}{x + 5} = \frac{12}{6}$$

Additional Techniques: When direct laws fail

Evaluate if possible $\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 4}$

If
$$R_{1}(x) = \frac{x^2 - x - 2}{x^2 - 4}$$
 then 2 is not in the domain of R .
Since $x^2 - x - 2$ also gives to 3no as $x \rightarrow 2$, there must
be a common factor $(x - 2)$.
We can use some algebra $x \neq 2$ x^{-2}
 $\lim_{x \rightarrow 2} \frac{x^2 - x - 2}{x^2 - 4} = \lim_{x \rightarrow 2} \frac{(x - 2)(x + 1)}{(x - 2)(x + 2)}$ converses

 $= \lim_{X \to 2} \frac{X+1}{X+2} = \frac{3}{4}$

Additional Techniques: When direct laws fail

Evaluate if possible lin

$$m_{\rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}$$

Both numerator and denominator take the value zero if x=1. This does indicate that X-1 is a common "factor." We'll rationalize. The conjugate of JX+3 -2 is JX+3 +2

$$\lim_{X \to 1} \frac{\sqrt{x+3} - 2}{x-1} : \lim_{X \to 1} \left(\frac{\sqrt{x+3} - 2}{x-1} \right) \cdot \left(\frac{\sqrt{x+3} + 2}{\sqrt{x+3} + 2} \right)$$

=
$$\lim_{x \to 1} (\sqrt{x+3}^2 - 2\sqrt{x+3} + 2\sqrt{x+3} - 2^2)$$

 $(x-1)(\sqrt{x+3} + 2)$

$$= \int_{x \to 1}^{x} \frac{x+3-4}{(x-1)(\sqrt{x+3}+2)} \qquad x-1 = 1(x-1)$$

$$= \lim_{X \to 1} \frac{X - 1}{(X - 1)(\sqrt{X + 3} + 2)} =$$

$$= \lim_{X \to 1} \frac{1}{\sqrt{X+3} + 2} = \frac{1}{\sqrt{1+3} + 2} = \frac{1}{2+2} = \frac{1}{4}$$

Question

Evaluate if possible

$$\lim_{x\to 2}\frac{x-2}{\sqrt{x}-\sqrt{2}}$$

t

(a) $\frac{1}{\sqrt{2}}$

(b) √2

(c) DNE

 $2\sqrt{2}$

$$\sqrt{x} - \sqrt{2}$$

$$: \int_{X \to 2}^{1} \left(\frac{x - 2}{\sqrt{x} - \sqrt{2}} \right) \cdot \frac{\sqrt{x} + \sqrt{2}}{\sqrt{x} + \sqrt{2}}$$

$$: \int_{X \to 2}^{1} \frac{(x - 2)(\sqrt{x} + \sqrt{2})}{x - 2}$$

$$: \int_{X \to 2}^{1} (\sqrt{x} + \sqrt{2}) = \sqrt{2} + \sqrt{2} = 2\sqrt{2}$$

Observations

In limit taking, the form " $\frac{0}{0}$ " sometimes appears. This is called an **indeterminate form**. Standard strategies are

(1) Try to factor the numerator and denominator to see if a common factor–(x - c)–can be cancelled.

(2) If dealing with roots, try rationalizing to reveal a common factor.

The form

"nonzero constant"

0

is not indeterminate. It is undefined. When it appears, the limit doesn't exist.

Example

Let $f(x) = x^3 + 2x$. Determine the difference quotient

$$\frac{f(x+h)-f(x)}{h} \quad \text{for} \quad h \neq 0.$$

Next, take the limit as $h \rightarrow 0$ of this difference quotient.

$$f(x) = x^{3} + 2x$$

$$f(x+h) = (x+h)^{3} + 2(x+h)$$

$$= x^{3} + 3x^{2}h + 3xh^{2} + h^{3} + 2x + 2h$$

$$\frac{f(x+h) - f(x)}{h} = \frac{x^{3} + 3x^{2}h + 3xh^{2} + h^{3} + 2x + 2h - (x^{3} + 2x)}{h}$$

$$= \frac{3x^{2}h + 3xh^{2} + h^{3} + 2h}{h}$$

= $\frac{K(3x^{2} + 3xh + h^{2} + 2)}{k}$

2
 3x²+ 3xh+ h²+2

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} (3x^2 + 3xh + h^2 + 2) =$$

$= 3x^2 + 3y \cdot 0 + 0^2 + 2$

$= 3x^{2} + 2$