August 26 Math 2306 sec 54 Fall 2015

Section 2.2: Separation of Variables

Definition: The first order equation $y^{\prime}=f(x, y)$ is said to be separable if the right side has the form

$$
f(x, y)=g(x) h(y)
$$

That is, a separable equation is one that has the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

The right hand side must be able to be expressed as the product of a function of only x and a function of only y.

Solving Separable Equations

Recall that from $\frac{d y}{d x}=g(x)$, we can integrate both sides

$$
\begin{aligned}
& \int \frac{d y}{d x} d x=\int g(x) d x \\
& y=G(x)+C
\end{aligned}
$$

where $G(x)$ is any antiderivative
of $g(x)$
We'll use this observation!

Solving Separable Equations
Let's assume that it's safe to divide by $h(y)$ and let's set $p(y)=1 / h(y)$. We solve (usually find an implicit solution) by separating the variables.

$$
\begin{array}{r}
\frac{d y}{d x}=g(x) h(y) \Rightarrow \frac{1}{h(y)} \frac{d y}{d x}=g(x) \\
\Rightarrow \frac{1}{h(y)} \frac{d y}{d x} d x=g(x) d x \\
p(y) d y=g(x) d x \\
\int p(y) d y=\int g(x) d x
\end{array}
$$

$$
P(y)=G(x)+C
$$

where P and G are antiderivatives of pond g, respectively.

$$
P(y)=G(x)+C
$$

is a one parometa family of solutions given implicitly.

Solve the ODE

$$
\begin{aligned}
\frac{d y}{d x}=-\frac{x}{y} \quad \frac{d y}{d x}=-x\left(\frac{1}{y}\right) \\
y \frac{d y}{d x}=-x \Rightarrow y \frac{d y}{d x} d x=-x d x \\
y d y=-x d x \\
\int y d y=\int-x d x \\
\frac{y^{2}}{2}=-\frac{x^{2}}{2}+k
\end{aligned}
$$

$y^{2}=-x^{2}+C \quad$ where $c=2 k$

$$
x^{2}+y^{2}=C
$$

One parameter family of implicit solutions.

Solve the ODE

$$
\begin{aligned}
t e^{t-y} d t-d y & =0 \Rightarrow-d y=-t e^{t-y} d t \\
d y & =t e^{t} \cdot e^{-y} d t \\
\frac{1}{e^{-y}} d y & =t e^{t} d t \\
e^{y} d y & =t e^{t} d t \Rightarrow \int e^{y} d y=\int t e^{t} d t
\end{aligned}
$$

$e^{y}=\int t e^{t} d t \quad$ Integrate by parts

$$
\begin{array}{ll}
e^{y}=t e^{t}-\int e^{t} d t & u=t \quad d u=d t \\
v=e^{t} \quad d v=e^{t} d t \\
e^{y}=t e^{t}-e^{t}+C &
\end{array}
$$

a one parameter fomil, of implicit solutions.

An IVP ${ }^{1}$
Solve the initial value problem

$$
\frac{d Q}{d t}=-2(Q-70), \quad Q(0)=180
$$

Solve th DE first

$$
\begin{aligned}
& \frac{1}{Q-70} \frac{d Q}{d t}=-2 \Rightarrow \frac{1}{Q-70} \frac{d Q}{d t} d t=-2 d t \\
& \frac{1}{Q-70} d Q=-2 d t \Rightarrow \int \frac{1}{Q-70} d Q=\int-2 d t
\end{aligned}
$$

${ }^{1}$ Recall IVP stands for initial value problem.

$$
\ln |Q-70|=-2 t+C
$$

Exponentiate

$$
\begin{aligned}
e^{\ln |Q-70|} & =e^{-2 t+C} \\
|Q-70| & =e^{c} e^{-2 t}
\end{aligned}
$$

Lat $A=e^{c}$ or $-e^{c}$ or 0
then we get nd of obs. value hers

$$
\begin{aligned}
Q-70 & =A e^{-2 t} \\
Q & =A e^{-2 t}+70
\end{aligned}
$$

$$
Q(0)=180
$$

impose the I.C.

$$
\begin{aligned}
Q(0)=A e^{0}+70 & =180 \\
A+70 & =180 \Rightarrow A=180-70=110
\end{aligned}
$$

The solution to the IV P is

$$
Q=110 e^{-2 t}+70
$$

