August 27 MATH 1113 sec. 51 Fall 2018

Section 2.1: Graphing Functions: Increasing, Decreasing

Some definitions:

Suppose that the function f is defined on an open interval I.

- f is increasing on I if for each a, b in I, if a < b, then f(a) < f(b).
- *f* is *decreasing* on *I* if for each *a*, *b* in *I*, if a < b, then f(a) > f(b).

August 24, 2018

1/26

• f is constant on I if f(a) = f(b) for each a, b in I.

Note that going from left to right, the graph of f

- goes upward if f is increasing
- goes downward if f is decreasing
- is horizontal if f is constant.

Question

Suppose *f* is a function that is increasing on $(-\infty, \infty)$. If we draw a straight line through the points (1, f(1)) and (3, f(3)), then the slope of this line would be

- (b) positive, but I'm not sure
- (c) negative, and I'm confident

August 24, 2018

2/26

- (d) negative, but I'm not sure
- (e) there's not enough information to determine whether the slope would be positive, negative, or zero

Relative Extrema

k not end

Some definitons:

- f(c) is a relative maximum if there exists an open interval I containing c such that f(x) < f(c) for all x in I different from c,</p>
- *f*(*c*) is a **relative minimum** if there exists an open interval *I* containing *c* such that *f*(*x*) > *f*(*c*) for all *x* in *I* different from *c*.

An **extremum** is a maximum or a minimum. The plurals of these three terms are extrema, maxima, and minima. The word *relative* can be replaced with the word **local**.

Relative Extrema

Relative extrema are the *y*-values for local highest or lowest points on a graph.

Figure: f has relative maxima f(a) and f(c) and relative minima f(b) and f(d)

Minute Exercise

Draw the graph of a function f with domain [0, 5] having the following properties:

- f is decreasing on (0,2), increasing on (2,4), and decreasing on (4,5)
- f has relative minimum 0 when x = 2 and relative maximum 7 when x = 4.

イロト 不得 トイヨト イヨト 二日

Section 2.5: Basic Transformations

From a small library of known function plots, we can graph a variety of functions if they can be determined as simple tranformations. We'll consider the following transformations:

- Translations shifting a graph up or down (vertical) or to the left or right (horizontal)
- Reflections taking the *mirror* image in the x or y axis
- Scaling stretching or shriking a graph in either of the vertical or horizontal orientations

Figure: The graph of y = f(x) is shown along with a table of select points. Let's consider the plots of y = f(x) + 1 and y = f(x) - 1.

Vertical Translation: y = f(x) + b or y = f(x) - b

X	f(x)	X	f(x) + 1	X	f(x) - 1
-2	0	-2	0+1=1	-2	0-1 :-1
-1	1	-1	1+1=2	-1	1-1 =0
0	0	0	1	0	-1
1	2	1	3	1	1
2	$\frac{3}{2}$	2	sh	2	<u>+</u> 2
3	ī	3	2	3	0

Figure: Complete the tables of values.

August 24, 2018 8 / 26

イロト イポト イヨト イヨト 二日

Vertical Translation: y = f(x) + b or y = f(x) - b

Figure: Left: y = f(x) (blue dots), compared to y = f(x) + 1 (red) Right: y = f(x) (blue dots), compared to y = f(x) - 1 (red)

Horizontal Translation: y = f(x - d) or y = f(x + d)

Figure: The graph of y = f(x) is shown along with a table of select points. Let's consider the plots of y = f(x - 1) and y = f(x + 1).

Horizontal Translation: y = f(x - d) or y = f(x + d)

X	f(x)	X	f(x - 1)	X	f(x + 1)
-3	undef.	-3	f(-4) - undet	-3	f(-z)=0
-2	0	-2	f(-3)-undet	-2	f(-1) = 1
-1	1	-1	f(-1) = 0	-1	0
0	0	0		0	2
1	2	1	0	1	3/2
2	$\frac{3}{2}$	2	Z	2	1
3	ī	3	3	3	undef
4	undef.	4	1	4	undef.

Figure: Complete the tables of values.

August 24, 2018 11 / 26

Figure: Left: y = f(x) (blue dots), compared to y = f(x - 1) (red) Right: y = f(x) (blue dots), compared to y = f(x + 1) (red)

Vertical and Horizontal Translations

For b > 0 and d > 0

- ► the graph of y = f(x) + b is the graph of y = f(x) shifted up b units,
- ► the graph of y = f(x) b is the graph of y = f(x) shifted down b units,
- ► the graph of y = f(x d) is the graph of y = f(x) shifted right d units,
- ► the graph of y = f(x + d) is the graph of y = f(x) shifted left d units,

Question

August 24, 2018 14 / 26

Figure: The graph of y = f(x) is shown along with a table of select points. Now let's consider graphing y = f(-x) and y = -f(x)

Reflections: y = f(-x) or y = -f(x)

X	f(x)	X	f(-x)	X	-f(x)
-3	undef.	-3	f(3) = 1	-3	undef
-2	0	-2	$f(z) = {}^{3}h$	-2	-f(-3) = -0 = 0
-1	1	-1	2	-1	-f(-1)= -1
0	0	0	0	0	0
1	2	1	1	1	-2
2	3 2	2	0	2	-3 2
3	Ī	3	undef	3	-

Figure: Complete the tables of values.

August 24, 2018 16 / 26

・ロン ・四 と ・ 回 と ・ 回

Reflections: y = f(-x) or y = -f(x)

Figure: Left: y = f(x) (blue dots), compared to y = f(-x) (red) Right: y = f(x) (blue dots), compared to y = -f(x) (red)

Reflection in the coordinate axes

The graph of y = f(-x) is the reflection of the graph of y = f(x) across the *y*-axis.

The graph of y = -f(x) is the reflection of the graph of y = f(x) across the x-axis.

> August 24, 2018

18/26

Note that if (a, b) is a point on the graph of y = f(x), then (1) the point (-a, b) is on the graph of y = f(-x), and (2) the point (a, -b) is on the graph of y = -f(x).

Stretching and Shrinking

Since we already know that introducing a minus sign as in f(-x) and -f(x) results in a reflection, let's consider a positive number *a* and investigate the relationship between the graph of y = f(x) and each of

$$y = af(x)$$
, and $y = f(ax)$.

August 24, 2018

19/26

The outcome depends on whether a > 1 or 0 < a < 1.

Why aren't we bothering with the case a = 1?

Vertical Stretch or Shrink: y = af(x)

Figure: y = f(x) is in blue, and y = 2f(x) is in red. Since a = 2 > 1, the graph is stretched vertically.

< ロ > < 同 > < 回 > < 回 >

August 24, 2018

20/26

Vertical Stretch or Shrink: y = af(x)

Figure: y = f(x) is in blue, and $y = \frac{1}{2}f(x)$ is in red. Since $a = \frac{1}{2} < 1$, the graph is shrinked vertically.

< ロ > < 同 > < 回 > < 回 >

Vertical Stretch or Shrink: y = af(x)

The graph of y = af(x) is obtained from the graph of y = f(x). If a > 0, then

y = af(x) is stretched vertically if a > 1, and y = af(x) is shrunk (a.k.a. compressed) vertically if 0 < a < 1.

If a < 0, then the stretch (|a| > 1) or shrink (0 < |a| < 1) is combined with a reflection in the *x*-axis.

Figure: y = f(x) is in blue, and y = f(2x) is in red. Since c = 2 > 1, the graph is shrinked horizontally.

Figure: y = f(x) is in blue, and $y = f(\frac{1}{2}x)$ is in black. Since $c = \frac{1}{2} < 1$, the graph is stretched horizontally.

Figure: y = f(x) is in blue dots. The compressed red curve is y = f(2x), and the stretched black curve is $y = f(\frac{1}{2}x)$.

The examples given generalize except that we did not consider an example with c < 0. This combines the stretch/shrink with a reflection. We have the following result:

The graph of y = f(cx) is obtained from the graph of y = f(x). If c > 0, then

y = f(cx) is shrunk (a.k.a. compressed) horizontally if c > 1, and y = f(cx) is stretched horizontally if 0 < c < 1.

If c < 0, then the shrink (|c| > 1) or stretch (0 < |c| < 1) is combined with a reflection in the y-axis.

> August 24, 2018

26/26