August 27 MATH 1113 sec. 52 Fall 2018

Section 2.1: Graphing Functions: Increasing, Decreasing

Some definitions:

Suppose that the function *f* is defined on an open interval *I*.

- *f* is *increasing* on *I* if for each *a*, *b* in *I*, if a < b, then f(a) < f(b).
- *f* is *decreasing* on *I* if for each *a*, *b* in *I*, if a < b, then f(a) > f(b).

August 24, 2018

1/26

• *f* is *constant* on *I* if f(a) = f(b) for each *a*, *b* in *I*.

Note that going from left to right, the graph of f

- goes upward if f is increasing
- goes downward if f is decreasing
- is horizontal if f is constant.

Question

Suppose the function g(x) is **decreasing** on the interval (0,7). Which of the following is true?

August 24, 2018

2/26

(d) All of the above are true.

(e) None of the above are true.

Relative Extrema

not end mt

Some definitons:

Suppose f is a function and c is in the interior of the domain of f. Then

- f(c) is a relative maximum if there exists an open interval *I* containing *c* such that f(x) < f(c) for all x in *I* different from *c*,
- f(c) is a relative minimum if there exists an open interval I containing c such that f(x) > f(c) for all x in I different from c.

An **extremum** is a maximum or a minimum. The plurals of these three terms are extrema, maxima, and minima. The word *relative* can be replaced with the word **local**.

Relative Extrema

Relative extrema are the *y*-values for local highest or lowest points on a graph.

Figure: f has relative maxima f(a) and f(c) and relative minima f(b) and f(d)

Minute Exercise

Draw the graph of a function f with domain [0, 5] having the following properties:

- f is decreasing on (0,2), increasing on (2,4), and decreasing on (4,5)
- f has relative minimum 0 when x = 2 and relative maximum 7 when x = 4.

イロト 不得 トイヨト イヨト 二日

Section 2.5: Basic Transformations

From a small library of known function plots, we can graph a variety of functions if they can be determined as simple tranformations. We'll consider the following transformations:

- Translations shifting a graph up or down (vertical) or to the left or right (horizontal)
- Reflections taking the *mirror* image in the x or y axis
- Scaling stretching or shriking a graph in either of the vertical or horizontal orientations

Figure: The graph of y = f(x) is shown along with a table of select points. Let's consider the plots of y = f(x) + 1 and y = f(x) - 1.

Vertical Translation: y = f(x) + b or y = f(x) - b

	f(x)	X	f(x) + 1	X	f(x) - 1
-2	0	-2	0+1 = 1		0-1 = -1
-1	1	-1	1+1 = 2	-1	1-1=0
-2 -1 0	0	0	1 3	0	-1
1	2	1	З	1	I
2	2 3 2 1	2	5/2	2 3	12
3	1	3	2	3	0

Figure: Complete the tables of values.

August 24, 2018 8 / 26

Vertical Translation: y = f(x) + b or y = f(x) - b

Figure: Left: y = f(x) (blue dots), compared to y = f(x) + 1 (red) Right: y = f(x) (blue dots), compared to y = f(x) - 1 (red)

Horizontal Translation: y = f(x - d) or y = f(x + d)

Figure: The graph of y = f(x) is shown along with a table of select points. Let's consider the plots of y = f(x - 1) and y = f(x + 1).

Horizontal Translation: y = f(x - d) or y = f(x + d)

X	f(x)	X	f(x - 1)	X	f(x + 1)
-3	undef.	-3	f(-4) - undet	-3	f(-2) = 0
-2	0	-2	f(-3) - undet	-2	f(-1) = 1
-1	1	-1	f (-z)= 0	-1	٥
0	0	0	1	0	2
1	2	1	0	1	3
2	$\frac{3}{2}$	2	2	2	
3	ī	3	7	3	undef
4	undef.	4	Ĩ	4	undef undef

Figure: Complete the tables of values.

August 24, 2018 11 / 26

イロト 不得 トイヨト イヨト 二日

Figure: Left: y = f(x) (blue dots), compared to y = f(x - 1) (red) Right: y = f(x) (blue dots), compared to y = f(x + 1) (red)

Vertical and Horizontal Translations

For b > 0 and d > 0

- ► the graph of y = f(x) + b is the graph of y = f(x) shifted up b units,
- ► the graph of y = f(x) b is the graph of y = f(x) shifted down b units,
- ► the graph of y = f(x d) is the graph of y = f(x) shifted right d units,
- ► the graph of y = f(x + d) is the graph of y = f(x) shifted left d units,

Question

<ロト イ 団 ト イ ヨ ト イ ヨ ト ヨ の へ で August 24, 2018 14 / 26

Figure: The graph of y = f(x) is shown along with a table of select points. Now let's consider graphing y = f(-x) and y = -f(x)

Reflections: y = f(-x) or y = -f(x)

X	f(x)	X	f(-x)	X	-f(x)
-3	undef.	-3	f(3)=1	-3	
-2	0		$f(z) = \frac{1}{2}$	-2	-f(-v) = 0
-1	1	-1	2	-1	-f(-1) =-1
0	0	0	0	0	0
1	2	1	1	1	-2
2	$\frac{3}{2}$	2	0	2	.3h
3	1	3	under	3	- 1

Figure: Complete the tables of values.

・ロン ・四 と ・ 回 と ・ 回

Reflections: y = f(-x) or y = -f(x)

Figure: Left: y = f(x) (blue dots), compared to y = f(-x) (red) Right: y = f(x) (blue dots), compared to y = -f(x) (red)