August 27 MATH 1113 sec. 52 Fall 2018

Section 2.1: Graphing Functions: Increasing, Decreasing
Some definitions:
Suppose that the function f is defined on an open interval l.

- f is increasing on I if for each a, b in I, if $a^{k^{*}}<b$, then $f(a)<f(b)$.
- f is decreasing on I if for each a, b in I, if $a<b$, then $f(a)>f(b)$.
- f is constant on $/$ if $f(a)=f(b)$ for each a, b in $/$.

Note that going from left to right, the graph of f

- goes upward if f is increasing
- goes downward if f is decreasing
- is horizontal if f is constant.

Question

Suppose the function $g(x)$ is decreasing on the interval $(0,7)$. Which of the following is true?
(a) $g(1)<g(4)$

(b) $g(2)>g(3)$

(c) $g(4)<g(6)$

(d) All of the above are true.
(e) None of the above are true.

Relative Extrema

Some defintions:

Suppose f is a function and c is in the interior of the domain of f. Then

- $f(c)$ is a relative maximum if there exists an open interval / containing c such that $f(x)<f(c)$ for all x in $/$ different from c, m- y-value
- $f(c)$ is a relative minimum if there exists an open interval / containing c such that $f(x)>f(c)$ for all x in I different from c.

An extremum is a maximum or a minimum. The plurals of these three terms are extrema, maxima, and minima. The word relative can be replaced with the word local.

Relative Extrema

Relative extrema are the y-values for local highest or lowest points on a graph.

Figure: f has relative maxima $f(a)$ and $f(c)$ and relative minima $f(b)$ and $f(d)$

Minute Exercise

Draw the graph of a function f with domain $[0,5]$ having the following properties:

- $f(0)=1$ and $f(5)=5$
- f is decreasing on $(0,2)$, increasing on (2,4), and decreasing on $(4,5)$
- f has relative minimum 0 when $x=2$ and relative maximum 7 when $x=4$.

Section 2.5: Basic Transformations

From a small library of known function plots, we can graph a variety of functions if they can be determined as simple tranformations. We'll consider the following transformations:

- Translations shifting a graph up or down (vertical) or to the left or right (horizontal)
- Reflections taking the mirror image in the x or y axis
- Scaling stretching or shriking a graph in either of the vertical or horizontal orientations

Vertical Translation: $y=f(x)+b$ or $y=f(x)-b$

x	$f(x)$
-2	0
-1	1
0	0
1	2
2	$\frac{3}{2}$
3	1

Figure: The graph of $y=f(x)$ is shown along with a table of select points.
Let's consider the plots of $y=f(x)+1$ and $y=f(x)-1$.

Vertical Translation: $y=f(x)+b$ or $y=f(x)-b$

Figure: Complete the tables of values.

Vertical Translation: $y=f(x)+b$ or $y=f(x)-b$

Figure: Left: $y=f(x)$ (blue dots), compared to $y=f(x)+1$ (red) Right: $y=f(x)$ (blue dots), compared to $y=f(x)-1$ (red)

Horizontal Translation: $y=f(x-d)$ or $y=f(x+d)$

x	$f(x)$
-2	0
-1	1
0	0
1	2
2	$\frac{3}{2}$
3	1

Figure: The graph of $y=f(x)$ is shown along with a table of select points. Let's consider the plots of $y=f(x-1)$ and $y=f(x+1)$.

Horizontal Translation: $y=f(x-d)$ or $y=f(x+d)$

x	$f(x)$	x	$f(x-1)$	x	$f(x+1)$
-3	undef.	-3	$f(-4)$-undet	-3	$f(-2)=0$
-2	0	-2	$f(-3)$-undet	-2	$f(-1)=1$
-1	1	-1	$f(-2)=0$	-1	0
0	0	0	1	0	2
1	2	1	0	1	$\frac{3}{2}$
2	$\frac{3}{2}$	2	2	2	1
3	1	3	$\frac{3}{2}$	3	undef
4	undef.	4	1	4	undef

Figure: Complete the tables of values.

Horizontal Translation: $y=f(x-d)$ or $y=f(x+d)$

Figure: Left: $y=f(x)$ (blue dots), compared to $y=f(x-1)$ (red) Right: $y=f(x)$ (blue dots), compared to $y=f(x+1)$ (red)

Vertical and Horizontal Translations

For $b>0$ and $d>0$

- the graph of $y=f(x)+b$ is the graph of $y=f(x)$ shifted up b units,
- the graph of $y=f(x)-b$ is the graph of $y=f(x)$ shifted down b units,
- the graph of $y=f(x-d)$ is the graph of $y=f(x)$ shifted right d units,
- the graph of $y=f(x+d)$ is the graph of $y=f(x)$ shifted left d units,

Question

The blue dotted curve is $\mathrm{y}=\mathrm{g}(\mathrm{x})$. The red solid curve is the graph of $y=$
(a) $g(x-2)+1$

$$
\begin{gathered}
x-2=0 \\
x=2
\end{gathered}
$$

(b) $g(x+2)+1$
(c) $g(x-2)-1$
(d) $g(x+2)-1$
(e) can't be determined without more information

Reflections: $y=f(-x)$ or $y=-f(x)$

x	$f(x)$
-2	0
-1	1
0	0
1	2
2	$\frac{3}{2}$
3	1

Figure: The graph of $y=f(x)$ is shown along with a table of select points. Now let's consider graphing $y=f(-x)$ and $y=-f(x)$

Reflections: $y=f(-x)$ or $y=-f(x)$

X	$f(x)$	x	$f(-x)$	X	$-f(x)$
-3	undef.	-3	$f(3)=1$	-3	-f(-3) undef
-2	0	-2	$f(2)=\frac{3}{2}$	-2	$-f(-2)=0$
-1	1	-1	2	-1	$-f(-1)=-1$
0	0	0	0	0	0
1	2	1	1	1	-2
2	$\frac{3}{2}$	2	0	2	-3h
3	1	3	undet	3	-1

Figure: Complete the tables of values.

Reflections: $y=f(-x)$ or $y=-f(x)$

Figure: Left: $y=f(x)$ (blue dots), compared to $y=f(-x)$ (red)
Right: $y=f(x)$ (blue dots), compared to $y=-f(x)$ (red)

