August 24 Math 2306 sec. 53 Fall 2018

Section 4: First Order Equations: Linear

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x) .
$$

- Integrate both sides, and solve for y.

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) f(x) d x=e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
$$

Solve the IVP
$x \frac{d y}{d x}-y=2 x^{2}, x>0 \quad y(1)=5 \quad$ Put in standerd form

$$
\frac{d y}{d x}-\frac{1}{x} y=2 x \quad P(x)=\frac{-1}{x}
$$

Intecrating factor $\mu=e^{\int P(x) d x}=e^{\int \frac{-1}{x} \cdot d x}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}$
So

$$
\begin{gathered}
\mu=x^{-1} \quad \text { Mult. by } \mu \\
\ddot{x}^{-1}\left(\frac{d y}{d x}-\frac{1}{x} y\right)=x^{-1}(2 x) \\
\frac{d}{d x}\left[x^{-1} y\right]=2
\end{gathered}
$$

$$
\begin{gathered}
\int \frac{d}{d x}\left[x^{-1} y\right] d x=\int 2 d x \\
x^{-1} y=2 x+C
\end{gathered}
$$

$y=2 x^{2}+C x \quad$ a ore ponometer foils of solutions to the ODE

Now use $y(1)=5$.

$$
s=2(1)^{2}+C(1)=2+C \Rightarrow C=3
$$

The solution to the IVP is

$$
y=2 x^{2}+3 x
$$

The fomily of solutions
way

$$
\begin{aligned}
& y=2 x^{2}+C x \\
& y_{p} \\
& \text { Sc omplementaly } \\
& \text { particulor } \\
& \text { Solut } 10 \text { r } \\
& \text { solution }
\end{aligned}
$$

Verify
Just for giggles, lets verify that our solution $y=2 x^{2}+3 x$ really does solve the differential equation we started with

$$
\begin{aligned}
x \frac{d y}{d x}-y & =2 x^{2} \\
y=2 x^{2}+3 x \quad \text { so } y^{\prime} & =4 x+3 \\
? \frac{d y}{d x}-y & =2 x^{2} \\
x(4 x+3)-\left(2 x^{2}+3 x\right) & = \\
4 x^{2}+3 x-2 x^{2}-3 x & = \\
4 x^{2}-2 x^{2} & = \\
2 x^{2} & =2 x^{2}
\end{aligned}
$$

Yes, it is solution

Steady and Transient States

For some linear equations, the term y_{c} decays as x (or t) grows. For example

$$
\frac{d y}{d x}+y=3 x e^{-x} \text { has solution } y=\frac{3}{2} x^{2} e^{-x}+C e^{-x} .
$$

Here, $y_{p}=\frac{3}{2} x^{2} e^{-x}$ and $y_{c}=C e^{-x}$.

Such a decaying complementary solution is called a transient state.
The corresponding particular solution is called a steady state.

