August 28 Math 2306 sec 51 Fall 2015

Section 2.3: First Order Linear Equations

A first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Provided $a_{1}(x) \neq 0$ on the interval / of definition of a solution, we can write the standard form of the equation

$$
P(x)=a_{0}(x) / a_{1}(x)
$$

$$
\frac{d y}{d x}+P(x) y=f(x) . \quad f(x)=g(x) / a_{1}(x)
$$

We'll be interested in equations (and intervals I) for which P and f are continuous on I.

Solutions (the General Solution)

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

It turns out the solution will always have a basic form of $y=y_{c}+y_{p}$ where

- y_{c} is called the complementary solution and would solve the problem

$$
\frac{d y}{d x}+P(x) y=0
$$

(called the associated homogeneous equation), and

- y_{p} is called the particular solution, and is heavily influenced by the function $f(x)$.

The cool thing is that our solution method will get both parts in one process-we won't get this benefit with higher order equations!

Motivating Example
The left side is the

$$
x^{2} \frac{d y}{d x}+2 x y=e^{x}
$$ product rule

$$
\frac{d}{d x}\left(x^{2} y\right)=x^{2} y^{\prime}+2 x y
$$

So our equation is

$$
\frac{d}{d x}\left(x^{2} y\right)=e^{x} \quad \text { we want to find } y
$$

Start by taking on anti derivative

$$
\int \frac{d}{d x}\left(x^{2} y\right) d x=\int e^{x} d x
$$

$$
\begin{aligned}
& x^{2} y=e^{x}+C \\
& \Rightarrow \quad y(x)=\frac{e^{x}}{x^{2}}+\frac{C}{x^{2}} \quad \operatorname{Cor}_{\text {dor }}^{\text {dos }} \text { and }
\end{aligned}
$$

Derivation of Solution via Integrating Factor
Solve the equation in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

The idea here is to multiply both sides of this equation by some function $\mu(x)$ so that the resulting left side is the product rule

$$
\frac{d}{d x}(\mu(x) y)=\mu y^{\prime}+\mu^{\prime} y
$$

Multiply the eau by $\mu: \mu y^{\prime}+\mu P(x) y=\mu f(x)$

We require

$$
\begin{aligned}
& \mu y^{\prime}+\mu^{\prime} y=\mu y^{\prime}+\mu P y \Rightarrow \\
& \mu^{\prime} y=\mu^{P} y \Rightarrow \\
& \mu^{\prime}=\mu^{P} \text { ie. } \frac{d \mu}{d x}=\mu P(x)
\end{aligned}
$$

This is first order separable.

$$
\begin{aligned}
& \frac{1}{\mu} \frac{d \mu}{d x} d x=P(x) d x \\
& \int \frac{1}{\mu} d \mu=\int P(x) d x
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Rightarrow \ln |\mu| & =\int P(x) d x & & \text { exponenticle } \\
|\mu| & =e^{\int P(x) d x} & \left.\begin{array}{rlrl}
\mu(x) & =e^{\int P(x) d x} & \text { well drop the } \\
\text { abs. bars }
\end{array}\right) \\
& & \text { Note } \int P(x) d x \\
\frac{d}{d x}[\mu(x) y] & =\mu y^{\prime}+\mu^{\prime} y & & =e^{\prime} P(x) \\
& =\mu y^{\prime}+\mu P(x) y & &
\end{array}
$$

$\mu(x)=e^{\int P(x) d x}$ is an integrating factor

From $y^{\prime}+p(x) y=f(x)$ malt. by μ

$$
\begin{aligned}
& \mu y^{\prime}+\mu P y=\mu f \quad \Rightarrow \\
& \frac{d}{d x}[\mu y]=\mu f \quad \text { integrate } \\
& \int \frac{d}{d x}(\mu y) d x=\int \mu(x) f(x) d x \\
& \mu y=\int \mu(x) f(x) d x+C \Rightarrow y=\mu^{-1} \int \mu(x) f(x) d x+C_{\mu}^{-1}
\end{aligned}
$$

General Solution of First Order Linear ODE

- Put the equation in standard form $y^{\prime}+P(x) y=f(x)$, and correctly identify the function $P(x)$.
- Obtain the integrating factor $\mu(x)=\exp \left(\int P(x) d x\right)$.
- Multiply both sides of the equation (in standard form) by the integrating factor μ. The left hand side will always collapse into the derivative of a product

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) f(x)
$$

- Integrate both sides, and solve for y.

$$
y(x)=\frac{1}{\mu(x)} \int \mu(x) f(x) d x=e^{-\int P(x) d x}\left(\int e^{\int P(x) d x} f(x) d x+C\right)
$$

