August 28 Math 2306 sec 54 Fall 2015

Section 2.2: Separation of Variables

We solved a separable equation $y^{\prime}=g(x) h(y)$ by dividing through by h to separate the variables.

$$
\int \frac{1}{h(y)} d y=\int g(x) d x
$$

This required us to assume that we could divide by h-i.e. that $h(y) \neq 0$ on the interval of interest.

Caveat regarding division by $h(y)$.
Solve the IVP by separation of variables ${ }^{1}$

$$
\begin{aligned}
& \frac{d y}{d x}=x \sqrt{y}, \quad y(0)=0 \quad \frac{d y}{d x}=x y^{1 / 2} \Rightarrow \\
& \Rightarrow \frac{1}{y^{1 / 2}} \frac{d y}{d x}=x \quad y^{-1 / 2} \frac{d y}{d x} d x=x d x \\
& \int y^{-1 / 2} d y=\int x d x \Rightarrow \frac{y^{1 / 2}}{1 / 2}=\frac{x^{2}}{2}+C \\
& \Rightarrow y^{1 / 2}=\frac{x^{2}}{4}+\frac{1}{2} C
\end{aligned}
$$

${ }^{1}$ Remember that one solution is $y(x)=0$ (for all x).

$$
\begin{aligned}
& y^{1 / 2}=\frac{x^{2}}{4}+k \quad\left(k=\frac{1}{2} C\right) \\
& y=\left(\frac{x^{2}}{4}+k\right)^{2}
\end{aligned}
$$

use $y(0)=0$ to get $y(0)=0=\left(\frac{0^{2}}{4}+k\right)^{2}=k^{2}$

$$
\Rightarrow k=0 \text { and } y=\left(\frac{x^{2}}{4}\right)^{2}=\frac{x^{4}}{16}
$$

we get th one Solution

$$
y=\frac{x^{4}}{16}
$$

The family of solutions from separating the vanchbles is

$$
y=\left(\frac{x^{2}}{4}+k\right)^{2}
$$

The solution $y(x)=0$ is not in this family.
we lost the solution when we divided by \sqrt{y}.

Losing a Solution

If $h\left(y_{0}\right)=0$, the the constant function $y(x)=y_{0}$ solves the IVP

$$
\frac{d y}{d x}=g(x) h(y), \quad y\left(x_{0}\right)=y_{0}
$$

When separating the variables, we may inadvertently discard this solution.

In our previous example, $h(y)=\sqrt{y}$ and $y_{0}=0$ so that $h\left(y_{0}\right)=\sqrt{0}=0$.

Solutions Defined by Integrals
Recall (Fundamental Theorem of Calculus)

$$
\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x) \quad \text { and } \quad \int_{x_{0}}^{x} \frac{d y}{d t} d t=y(x)-y\left(x_{0}\right)
$$

Use this to solve

$$
\begin{gathered}
\frac{d y}{d x}=g(x), \quad y\left(x_{0}\right)=y_{0} \\
\frac{d y}{d t}=g(t) \Rightarrow \int_{x_{0}}^{x} \frac{d y}{d t} d t=\int_{x_{0}}^{x} g(t) d t \\
\Rightarrow \quad \\
\left.g(t)\right|_{x_{0}} ^{x}=\int_{x_{0}}^{x} g(t) d t
\end{gathered}
$$

$$
\begin{aligned}
& y(x)-y\left(x_{0}\right)=\int_{x_{0}}^{x} g(t) d t \\
& y(x)-y_{0}=\int_{x_{0}}^{x} g(t) d t \Rightarrow y=y_{0}+\int_{x_{0}}^{x} g(t) d t
\end{aligned}
$$

Verity:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(y_{0}+\int_{x_{0}}^{x} g(t) d t\right)=0+\frac{d}{d x} \int_{x_{0}}^{x} g(t) d t=g(x) \\
& y\left(x_{0}\right)=y_{0}+\int_{x_{0}}^{x_{0}} g(t) d t=y_{0}+0=y_{0}
\end{aligned}
$$

Example: Express the solution of the IVP in terms of an integral.

$$
\begin{aligned}
\frac{d y}{d x}=\sin \left(x^{2}\right), \quad y(\sqrt{\pi})=1 \quad \text { Here } g(t)=\sin \left(t^{2}\right) \\
x_{0}=\sqrt{\pi} \text { and } y_{0}=1
\end{aligned}
$$

The solution is

$$
y=1+\int_{\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t
$$

Section 2.3: First Order Linear Equations

A first order linear equation has the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) .
$$

If $g(x)=0$ the equation is called homogeneous. Otherwise it is called nonhomogeneous.

Provided $a_{1}(x) \neq 0$ on the interval I of definition of a solution, we can write the standard form of the equation

$$
P(x)=a_{0}(x) / a_{1}(x)
$$

$$
\frac{d y}{d x}+P(x) y=f(x) . \quad f(x)=g(x) / a_{1}(x)
$$

We'll be interested in equations (and intervals I) for which P and f are continuous on I.

Solutions (the General Solution)

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

It turns out the solution will always have a basic form of $y=y_{c}+y_{p}$ where

- y_{c} is called the complementary solution and would solve the problem

$$
\frac{d y}{d x}+P(x) y=0
$$

(called the associated homogeneous equation), and

- y_{p} is called the particular solution, and is heavily influenced by the function $f(x)$.

The cool thing is that our solution method will get both parts in one process-we won't get this benefit with higher order equations!

Motivating Example
The left side is the $x^{2} \frac{d y}{d x}+2 x y=e^{x}$ derivative (product rule)

$$
\frac{d}{d x}\left(x^{2} y\right)
$$

The equation is $\frac{d}{d x}\left(x^{2} y\right)=e^{x}$.

So

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2} y\right) d x & =e^{x} d x \\
\int \frac{d}{d x}\left(x^{2} y\right) d x & =\int e^{x} d x
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} y=e^{x}+C \\
& y=\frac{e^{x}}{x^{2}}+\frac{C}{x^{2}}
\end{aligned}
$$

Derivation of Solution via Integrating Factor
Solve the equation in standard form

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

Goal: multiply this equation by a function $\mu(x)$ such that the resulting left hand side becomes $\frac{d}{d x}(\mu(x) y)$.
we need to find μ

$$
\frac{d}{d x}(\mu(x) y)=\mu y^{\prime}+\mu^{\prime} y
$$

$$
\mu y^{\prime}+\mu P(x) y=\mu f(x)
$$

we require $\quad \mu j+\mu^{\prime} y=\mu y^{\prime}+\mu P y$

$$
\begin{aligned}
& \Rightarrow \mu^{\prime} y=\mu P y \\
& \Rightarrow \mu^{\prime}=\mu P \quad \text { a separable equation } \\
& \frac{d \mu}{d x}=\mu P(x) \text { Separate } \\
& \int \frac{1}{\mu} d \mu=\int P(x) d x
\end{aligned}
$$

$$
\ln |\mu|=\int P(x) d x+C
$$

exponenticte

$$
|\mu|=e^{\int p(x) d x+C}=A e^{\int p(x) d x}
$$

Let $A=1$ or -1 to obtain
$\mu=e^{\int P(x) d x} \quad$ This is called on integreties factor

Well finish this construction on Monday.

