August 29 MATH 1113 sec .51 Fall 2018

Section 2.4: Symmetry
Consider the function $f(x)=2 x^{2}+1$. Suppose we wished to plot the new function $h(x)=f(-x) . \quad f(-x) \rightarrow$ reflection in y-axis
Find the formula for $h(x)=f(-x)$.

$$
h(x)=f(-x)=2(-x)^{2}+1=2(-x)(-x)+1=2 x^{2}+1
$$

This is the same as $f(x)$.

Even Functions

For $f(x)=2 x^{2}+1$, we found that

$$
f(-x)=2(-x)^{2}+1=2 x^{2}+1=f(x)
$$

Since the graph of $f(-x)$ is obtained from f by reflection in the y-axis, and $f(-x)$ and $f(x)$ are the same for each x, it must be that
the graph of f is its own reflection in the y-axis!

Definition: A function f is called an even function if

$$
f(-x)=f(x)
$$

for each x in its domain. We can say that such a function has even symmetry.

Even Symmetry

Figure: The graph to the left of the y-axis is the mirror image of the graph on the right side if a function is even.

Question

Suppose f is an even function whose graph passes through the point $(-2,5)$. Which of the following points must be on the graph of f ?
(a) $(5,-2)$
(b) $(-2,-5)$
(c) $(2,-5)$

$$
f(2)=5
$$

$$
\text { i.e. } \quad f(-(-2))=f(-2)=5
$$

(d) $(2,5)$
(e) There isn't enough information to determine if any of the above must be on the graph.

Symmetry

Consider the function $f(x)=x-\frac{1}{2} x^{3}$, and let $g(x)=f(-x)$.
Find the formula for $g(x)$.

$$
\begin{aligned}
g(x)=f(-x) & =(-x)-\frac{1}{2}(-x)^{3} \\
& =-x-\frac{1}{2}(-x)(-x)(-x) \\
& =-x-\frac{1}{2}\left(-x^{3}\right)=-x+\frac{1}{2} x^{3} \\
& =-\left(x-\frac{1}{2} x^{3}\right)=-f(x)
\end{aligned}
$$

Odd Functions

For $f(x)=x-\frac{1}{2} x^{3}$, we found that

$$
f(-x)=(-x)-\frac{1}{2}(-x)^{2}=-x+\frac{1}{2} x^{3}=-\left(x-\frac{1}{2} x^{3}\right)=-f(x) .
$$

So $f(-x)$ is the reflection in the y-axis, and it's equal to the reflection in the x-axis. That is
the reflection of f in the y-axis is its reflection in the x-axis!
Definition: A function f is called an odd function if

$$
f(-x)=-f(x)
$$

for each x in its domain. We can say that such a function has odd symmetry.

Odd Symmetry

Figure: The graph of f to the left of the y-axis can be obtained by reflecting the graph on the right twice-through the y-axis and then the x-axis.

Even and Odd Symmetry

- Polynomials with only even powers (including 0) are even functions. Polynomials with only odd powers are odd functions.
- Even symmetry is called symmetry with respect to the y-axis.
- Odd symmetry is called symmetry with respect to the origin.
- Not all functions have symmetry (for example polynomials with both even and odd power terms). Some important functions have known symmetry.

Question

Suppose f is an odd function and that 0 is in the domain of f. Then

$$
\begin{aligned}
& f(0)= \\
& f(0)=-f(-0)=-f(0) \\
& \\
& \sin c e=-0
\end{aligned}
$$

(b) -1
(c) 0
(d) More information would be needed to determine $f(0)$.

x-axis Symmetry

Consider the relation $\sqrt[3]{(x-1)^{2}}+\sqrt[3]{y^{2}}=1$. Note that if we replace y with $-y$ on the left side, we get

$$
\sqrt[3]{(x-1)^{2}}+\sqrt[3]{(-y)^{2}}=\sqrt[3]{(x-1)^{2}}+\sqrt[3]{y^{2}}
$$

So if (x, y) is on the graph of the relation, so is $(x,-y)$. Such a relation is said to have symmetry with respect to the x-axis-or just x-axis symmetry for short.

x-axis Symmetry

Figure: The part of the graph below the x-axis is the mirror image of the part above the x-axis.

Symmetry Checks

For a function or a relation given in terms of algebraic expressions, we can check for symmetry:

- Even: if replacing (x, y) with $(-x, y)$ results in the same formula (i.e. $f(-x)=f(x))$
- Odd: if replacing (x, y) with $(-x,-y)$ results in the same foruma (i.e. $f(-x)=-f(x)$)
- x-axis: if replacing (x, y) with $(x,-y)$ results in the same formula.

Question

Jack and Diane are working together to graph a function. Jack thinks they should test the function for x-axis symmetry. Diane says it's not necessary to check the function for x-axis symmetry. Who is correct, and why?
(a) Jack is correct because all functions have x-axis symmetry.
(b) Jack is correct because some but not all functions have x-axis symmetry.
(c) Diane is correct because very few functions have x-axis symmetry.
(d) Diane is correct because no function can have x-axis symmetry. violates the vertical dine test $/$

Minute Exercise

Take a moment to write a sentence or two to explain why

- it IS possible for a function to have y-axis symmetry, but
- it's NOT possible for a function to have x-axis symmetry.

