August 29 Math 2306 sec. 53 Fall 2018

Section 4: First Order Equations: Bernoulli Equations

Suppose $P(x)$ and $f(x)$ are continuous on some interval (a, b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since $n \neq 0,1$ it is necessarily nonlinear. So our previous approach involving an integrating factor does not apply directly. Fortunately, we can use a change of variables to obtain a related linear equation.

Solving the Bernoulli Equation

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

well introduce a new dependent variable u.
Set $u=y^{1-n}$. Note that

$$
\frac{d u}{d x}=(1-n) y^{1-n-1} \frac{d y}{d x}=(1-n) y^{-n} \frac{d y}{d x}
$$

Solving for $\frac{d y}{d x}=\frac{1}{1-n} y^{n} \frac{d u}{d x}$
Sub this into the ODE

$$
\frac{1}{1-n} y^{n} \frac{d u}{d x}+P(x) y=f(x) y^{n}
$$

Multiply, by $\frac{1-n}{y^{n}}$

$$
\begin{aligned}
& \frac{d u}{d x}+\frac{1-n}{y^{n}} P(x) y=\frac{1-n}{y^{n}} f(x) y^{n} \\
& \frac{d u}{d x}+(1-n) P(x) y^{1-n}=(1-n) f(x) \\
& \text { Recall } u=y^{1-n}
\end{aligned}
$$

The above is

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x)
$$

This is the linear ODE for u

$$
\frac{d u}{d x}+P_{1}(x) u=f_{1}(x)
$$

where $P_{1}(x)=(1-n) P(x)$ and

$$
f_{1}(x)=(1-n) f(x)
$$

Solve using an integrating factor to get u, then from $u=y^{1-n}$, we get $y=u^{\frac{1}{1-n}}$

Example
Solve the initial value problem $y^{\prime}-y=-e^{2 x} y^{3}$, subject to $y(0)=1$.
Here $n=3$. So $u=y^{1-3}=y^{-2}$

$$
\frac{d u}{d x}=-2 y^{-3} \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=-\frac{1}{2} y^{3} \frac{d u}{d x}
$$

Substitute

$$
\begin{aligned}
& -\frac{1}{2} y^{3} \frac{d u}{d x}-y=-e^{2 x} y^{3} \quad \text { Divide out } \frac{-1}{2} y^{3} \\
& \frac{d u}{d x}-\left(\frac{-2}{y^{3}}\right) y=\left(\frac{-2}{y^{3}}\right)\left(-e^{2 x}\right) y^{3}
\end{aligned}
$$

$$
\frac{d u}{d x}+2 y^{-2}=2 e^{2 x}
$$

Since $\dot{y}^{-2}=u$ $\frac{d u}{d x}+2 u=2 e^{2 x}$

August 27, 2018

For u, the $P(x)=2$. The integrating factor is

$$
\begin{aligned}
& \mu=e^{\int \rho(x) d x}=e^{\int 2 d x}=e^{2 x} \\
& e^{2 x}\left(\frac{d u}{d x}+2 u\right)=e^{2 x}\left(2 e^{2 x}\right) \\
& \frac{d}{d x}\left(e^{2 x} u\right)=2 e^{4 x} \\
& \int \frac{d}{d x}\left(e^{2 x} u\right) d x=\int 2 e^{4 x} d x \\
& e^{2 x} u=\frac{1}{2} e^{4 x}+C \\
& u=\frac{\frac{1}{2} e^{4 x}+C}{e^{2 x}}=\frac{1}{2} e^{2 x}+C e^{-2 x}
\end{aligned}
$$

From $u=y^{-2}, y=u^{-1 / 2}$

So

$$
y=\left(\frac{1}{2} e^{2 x}+C e^{-2 x}\right)^{-1 / 2}
$$

Now apply the $1 C \quad y(0)=1$

$$
\begin{aligned}
& \text { pily the } 1 C \quad y(0)=1 \\
& 1=\left(\frac{1}{2} e^{0}+C e^{0}\right)^{-1 / 2} \Rightarrow 1=\left(\frac{1}{2}+C\right)^{-1 / 2} \\
& 1^{-2}=\left(\left(\frac{1}{2}+C\right)^{-11 / 2}\right)^{-2} \Rightarrow 1=\frac{1}{2}+C \\
& C=\frac{1}{2}
\end{aligned}
$$

The solution to the IVP is

$$
y=\left(\frac{1}{2} e^{2 x}+\frac{1}{2} e^{-2 x}\right)^{-1 / 2}
$$

