August 24 Math 2306 sec. 56 Fall 2017

Section 4: First Order Equations: Bernoulli Equations

Suppose $P(x)$ and $f(x)$ are continuous on some interval (a, b) and n is a real number different from 0 or 1 (not necessarily an integer). An equation of the form

$$
\frac{d y}{d x}+P(x) y=f(x) y^{n}
$$

is called a Bernoulli equation.

Observation: This equation has the flavor of a linear ODE, but since $n \neq 0,1$ it is necessarily nonlinear. So our previous approach involving an integrating factor does not apply directly. Fortunately, we can use a change of variables to obtain a related linear equation.

Solving the Bernoulli Equation

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=f(x) y^{n} \tag{1}
\end{equation*}
$$

Let the new variable $u=y^{1-n}$. Then

$$
\begin{aligned}
& \frac{d u}{d x}=(1-n) y^{1-n-1} \frac{d y}{d x}=(1-n) y^{-n} \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{y^{n}}{1-n} \frac{d u}{d x} \leftarrow \text { replace } \frac{d y}{d x} \text { with this } \\
& \frac{y^{n}}{1-n} \frac{d u}{d x}+P(x) y=f(x) y^{n} \quad \text { Divide } \\
& \text { out } \frac{y^{n}}{1-n}
\end{aligned}
$$

$$
\frac{d u}{d x}+(1-n) P(x) \frac{y}{y^{n}}=(1-n) f(x) \frac{y^{n}}{y^{n}}
$$

Note $\frac{y}{y^{n}}=y^{1-n}=u$

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) f(x)
$$

Looks like $\frac{d u}{d x}+P_{1}(x) u=f_{1}(x)$
where $P_{1}=(1-n) P$ and $f_{1}=(1-n) f$

Solve this $1^{\text {st }}$ order linear equation for u. Then since

$$
\begin{array}{r}
u=y^{\frac{1}{1-n}} \\
y=u^{\frac{1}{1-n}}
\end{array}
$$

Example
Solve the initial value problem $y^{\prime}-y=-e^{2 x} y^{3}$, subject to $y(0)=1$.

$$
\begin{aligned}
n=3 \text {, so } u & =y^{1-3}=y^{-2} \\
\frac{d u}{d x} & =-2 y^{-3} \frac{d y}{d x} \Rightarrow \frac{-1}{2} y^{3} \frac{d u}{d x}=\frac{d y}{d x}
\end{aligned}
$$

Substitute

$$
-\frac{1}{2} y^{3} \frac{d u}{d x}-y=-e^{2 x} y^{3}
$$

$$
\begin{aligned}
& \text { Divide } \frac{d u}{2} y^{3} \quad-(-2) \frac{y}{y^{3}}=(-2)\left(-e^{2 x}\right) \frac{y^{3}}{y^{3}} \\
& \frac{y}{y^{3}}=y^{-2}=u
\end{aligned}
$$

Solve $\quad \frac{d u}{d x}+2 u=2 e^{2 x}$

$$
P(x)=2 \Rightarrow \mu=e^{\int P(x) d x}=e^{\int 2 d x}=e^{2 x}
$$

Mult by

$$
\begin{aligned}
e^{2 x} \frac{d u}{d x}+2 e^{2 x} u & =2 e^{2 x} \cdot e^{2 x} \\
\frac{d}{d x}\left[e^{2 x} u\right] & =2 e^{4 x}
\end{aligned}
$$

$$
* \int e^{a x} d x
$$

$$
=\frac{1}{a} e^{a x}+C
$$

$$
\int \frac{d}{d x}\left[e^{2 x} u\right] d x=\int 2 e^{4 x} d x
$$

$$
a-\text { conitan }
$$

$$
e^{2 x} u=2\left(\frac{1}{4} e^{4 x}\right)+C
$$

August 25, $2017 \quad 6 / 34$

$$
\begin{aligned}
& e^{2 x} u=\frac{1}{2} e^{4 x}+C \\
& u=\frac{\frac{1}{2} e^{4 x}+C}{e^{2 x}} \\
& u=\frac{1}{2} e^{2 x}+C e^{-2 x} \\
& \text { since } u=y^{-2}, \quad y=u^{-\frac{1}{2}}=\frac{1}{\sqrt{u}} \\
& y=\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+C e^{-2 x}}}
\end{aligned}
$$

Impose the condition $y(0)=1$

$$
\begin{aligned}
& y(0)=\frac{1}{\sqrt{\frac{1}{2} e^{0}+C e^{0}}}=1 \\
& \Rightarrow \sqrt{\frac{1}{2} e^{0}+C e^{0}}=1 \\
& \quad \frac{1}{2}+C=1^{2}=1 \Rightarrow C=\frac{1}{2}
\end{aligned}
$$

Finally,

$$
y=\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+\frac{1}{2} e^{-2 x}}}
$$

we cen clear the fractions by multiplying by $\frac{\sqrt{2}}{\sqrt{2}}$ to get

$$
\begin{aligned}
& y=\frac{1}{\sqrt{\frac{1}{2} e^{2 x}+\frac{1}{2} e^{-2 x}}} \frac{\sqrt{2}}{\sqrt{2}} \\
& y=\frac{\sqrt{2}}{\sqrt{e^{2 x}+e^{-2 x}}}
\end{aligned}
$$

Partial Derivatives

If $F(x, y)$ is a function of two variables, x and y, F may be differentiable with respect to one (or the other or both). A derivative with respect to one variable is called a partial derivative, and the partial symbol ∂ is used to denote this. The other variable is held constant. For example,

$$
F(x, y)=e^{x^{2}} \cos (y)
$$

has first partial derivatives

$$
\frac{\partial F}{\partial x}=2 x e^{x^{2}} \cos (y) \quad \text { and } \quad \frac{\partial F}{\partial y}=-e^{x^{2}} \sin (y) .
$$

If they exist, such a function will have four second partial derivatives

$$
\frac{\partial^{2} F}{\partial y \partial x}, \quad \frac{\partial^{2} F}{\partial x \partial y}, \quad \frac{\partial^{2} F}{\partial x^{2}}, \quad \text { and } \quad \frac{\partial^{2} F}{\partial y^{2}} .
$$

Exact Equations

We considered first order equations of the form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{2}
\end{equation*}
$$

The left side is called a differential form. We will assume here that M and N are continuous on some (shared) region in the plane.

Definition: The equation (2) is called an exact equation on some rectangle R if there exists a function $F(x, y)$ such that

$$
\frac{\partial F}{\partial x}=M(x, y) \quad \text { and } \quad \frac{\partial F}{\partial y}=N(x, y)
$$

for every (x, y) in R.

Exact Equation Solution

If $M(x, y) d x+N(x, y) d y=0$ happens to be exact, then it is equivalent to

$$
\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y=0
$$

This implies that the function F is constant on R and solutions to the
DE are given by the relation

$$
F(x, y)=C
$$

Recognizing Exactness

There is a theorem from calculus that ensures that if a function F has first partials on a domain, and if those partials are continuous, then the second mixed partials are equal. That is,

$$
\frac{\partial^{2} F}{\partial y \partial x}=\frac{\partial^{2} F}{\partial x \partial y} .
$$

If it is true that

$$
\frac{\partial F}{\partial x}=M \quad \text { and } \quad \frac{\partial F}{\partial y}=N
$$

this provides a condition for exactness, namely

$$
\begin{aligned}
\frac{\partial^{2} F}{\partial y \partial x} & =\frac{\partial}{\partial y} m \\
& =\frac{\partial m}{\partial y}
\end{aligned}
$$

Exact Equations

Theorem: Let M and N be continuous on some rectangle R in the plane. Then the equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is exact if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Example
Show that the equation is exact and obtain a family of solutions.

$$
\begin{gathered}
\left(2 x y-\sec ^{2} x\right) d x+\left(x^{2}+2 y\right) d y=0 \\
M(x, y)=2 x y-\sec ^{2} x \quad \text { and } \quad N(x, y)=x^{2}+2 y \\
\frac{\partial M}{\partial y}=2 x \cdot 1-0=2 x \quad \frac{\partial N}{\partial x}=2 x+0=2 x \\
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\end{gathered}
$$

So the equation is exact.
Solutions are given by $F(x, y)=C$ when e

$$
\begin{aligned}
\frac{\partial F}{\partial x} & =M(x, y)=2 x y-\operatorname{Sec}^{2} x \\
\frac{\partial F}{\partial y} & =N(x, y)=x^{2}+2 y \\
F(x, y) & =\int \frac{\partial F}{\partial x} d x=\int\left(2 x y-\sec ^{2} x\right) d x \\
& =2 y \cdot \frac{x^{2}}{2}-\tan x+g(y) \\
& =x^{2} y-\tan x+g(y)
\end{aligned}
$$

* The "constant" of integration con be a function of y.
we know
(1) $F(x, y)=x^{2} y-\tan x+g(y)$
and (2) $\frac{\partial F}{\partial y}=x^{2}+2 y$

From (1) $\frac{\partial F}{\gamma y}=x^{2} \cdot 1-0+g^{\prime}(y)$

$$
=x^{2}+g^{\prime}(y)
$$

Matching, $\quad g^{\prime}(y)=2 y$
an antiderivation is y^{2}

So

$$
F(x, y)=x^{2} y-\tan x+y^{2}
$$

all solutions are given implicitly by

$$
x^{2} y-\tan x+y^{2}=C
$$

