August 29 Math 3260 sec. 57 Fall 2017

Section 1.7: Linear Independence

We already know that a homogeneous equation Ax = 0 can be
thought of as an equation in the column vectors of the matrix
A=J[ajaz --- ay] as

X1a1 +X2a2 + "‘Xnan == 0

And, we know that at least one solution (the trivial one
X1 = Xo = --- = Xp = 0) always exists.

Whether or not there is a nontrivial solution gives us a way to
characterize the vectors a4, ..., an.
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Definition: Linear Dependence/Independence

An indexed set of vectors {v1,Va,...,Vp} in R” is said to be linearly
independent if the vector equation

X1V1 + XoV2 + - - - XpVp =0

has only the trivial solution.

The set {v1,Vvo,...,Vp} is said to be linearly dependent if there exists
a set of weights ¢y, ¢, .. ., ¢p at least one of which is nonzero such that

C1V1 + CoVo + - - - CpVp = 0.

(i.e. Provided the homogeneous equation possesses a nontrivial
solution.)

An equation ¢1Vy + CoV2 + - - - CpVp = 0, with at least one ¢; # 0, is
called a linear dependence relation.
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Special Cases

A set with two vectors {vq, Vv, } is linearly dependent if one is a scalar
multiple of the other.
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Example

Determine if the set is linearly dependent or linearly independent.
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More than Two Vectors

Theorem: The columns of a matrix A are linearly independent if and
only if the homogeneous equation Ax = 0 has only the trivial solution.

Example: Determine if the set of vectors is linearly dependent or

linearly independent. If they are dependent, find a linear dependence
relation.
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Theorem

An indexed set of two or more vectors is linearly dependent if and only

if at least one vector in the set is a linear combination of the others in
the set.

Example: Let u and v be any nonzero vectors in R3. Show that if w is
any vector in Span{u, v}, then the set {u,v,w} is linearly dependent.
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Caveat!

A set may be linearly dependent even if all proper subsets are linearly

independent. For example, consider

1 1 0
vi=| 0|, vo=|1|, and vz=1| 1 |.
0 0

0
Examine each set {vy,Vz2}, {Vy,V3}, {Vo,Vv3}, and {vy,vp,v3}
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Two More Theorems

Theorem: If a set contains more vectors than there are entries in each
vector, then the set is linearly dependent. That is, if {v{,v2,...,Vp} is
a set of vector in R”, and p > n, then the set is linearly dependent.
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Determine if the set is linearly dependent or linearly
independent

(LD

3
Y vechors n \?' =

Yhey are Jin “W&”k'

August 25, 2017 12/45



Determine if the set is linearly dependent or linearly
independent
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Section 1.8: Intro to Linear Transformations

Recall that the product Ax is a linear combination of the columns of

A—turns out to be a vector. If the columns of A are vectors in R™, and
there are n of them, then

» Ais an m x n matrix,
» the product Ax is defined for x in R”, and
» the vector b = Ax is a vector in R".

So we can think of A as an object that acts on vectors x in R” (via the
product Ax) to produce vectors b in R™.
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Transformation from R to R™

Definition: A transformation T (a.k.a. function or mapping) from R"
to R™ is a rule that assigns to each vector x in R” a vector T(x) in R,

Some relevant terms and notation include
» R"is the domain and R is called the codomain.
» For x in the domain, T(x) is called the image of x under T.
» The collection of all images is called the range.

» The notation T : R" — R™ may be used to indicate that R” is the
domain and R™ is the codomain.

» If T(x) is defined by multiplication by the m x n matrix A, we may
denote this by x — Ax.
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Matrix Transformation Example
1 3
LetA=| 2 4
0 -2
mapping T(x) = AxX.

(a) Find the image of the vector u = [

. Define the transformation T : R?2 — R3 by the

3 ] under T.

T A% = w i wby N
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1 3
A=12 4
0 -2
(b) Determine a vector x in R? whose image under T is
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1 3
A=1|2 4
0 -2

1
(c) Determine if { 0 | isintherangeof T. 1™
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Linear Transformations

Definition: A transformation T is linear provided
() T(u+v)= T(u)+ T(v) for every u.v in the domain of T, and
(i) T(cu) = cT(u) for every scalar ¢ and vector u in the domain of T.

Every matrix transformation (e.g. x — AXx) is a linear transformation.
And it turns out that every linear transformation from R” to R™ can be
expressed in terms of matrix multiplication.
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A Theorem About Linear Transformations:

If T is a linear transformation, then

T(cu+dv) =cT(u)+dT(v)

for scalars ¢, d and vectors u.v.

And in fact
T(ctus + Coup + -+ - + Ckly) = T(Cruq) + 2 T(Up) + - - - + Ck T(Uk).
e, TERY+GT @Yt 4 ckT(Ci,).
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Example

Let r be a nonzero scalar. The transformation T : R2 — R? defined by

is a linear transformation. e musk She T
. . . - 2\ - (A (_\’D
Show that T is a linear transformation. O Te+¥)= TN«

owe
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'It's called a contraction if 0 < r < 1 and a dilation when r > 1
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Figure: Geometry of dilation x — 2x. The 4 by 4 square maps to an 8 by 8
square.
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Section 1.9: The Matrix for a Linear Transformation
Elementary Vectors: We'll use the notation e; to denote the vector in
R" having a 1 in the /" position and zero everywhere else.

e.g. in R? the elementary vectors are

e1:[(1)}, and 92:|:?:|,

in R3 they would be

1 0 0
et=]10], e= 1 , and e3=|0
0 0 1

and so forth.

Note that in R”, the elementary vectors are the columns of the identity
In.
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Matrix of Linear Transformation

Let T : R? — R* be a linear transformation, and suppose

0 1
1

T(e1) = ) ’ and T(eZ) = 1
4 6

Use the fact that T is linear, and the fact that for each x in R? we have

x=| X | =x | + X, 0 = X,e1 + Xo€
=l x| =% 0 2| 4 | =X €1+ xer

to find a matrix A such that

T(x) = Ax forevery x e R2
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Theorem

Let T : R" — R™ be a linear transformation. There exists a unique
m x n matrix A such that

T(x) = Ax forevery xeR".

Moreover, the j column of the matrix A is the vector T(e;), where e is
the j column of the n x n identity matrix /,. That is,

A=[T(er) T(es) - T(en)].

The matrix A is called the standard matrix for the linear
transformation T.
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Example

Let T : R? — R? be the scaling trasformation (contraction or dilation
for r > 0) defined by

T(x) = rx, for positive scalar r.

Find the standard matrix for T.

s 1) - T(e\\'fH‘[ﬂ
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Example

Let T : R?2 — R? be the rotation trasformation that rotates each point

in R? counter clockwise about the origin through an angle ¢. Find the
standard matrix for T.
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Example?
Let T : R? —; R? be the projection tranformation that projects each

point onto the x; axis
Xq X
([])-13]

Find the standard matrix for T. - T('é' < [.D X‘X
Sv I Moy TR T([ ) - {]
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2See pages 73-75 in Lay for matrices associated with other geometric
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