August 29 Math 3260 sec. 57 Fall 2017

Section 1.7: Linear Independence

We already know that a homogeneous equation $A\mathbf{x} = \mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ as

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n = \mathbf{0}.$$

And, we know that at least one solution (the trivial one $x_1 = x_2 = \cdots = x_n = 0$) always exists.

Whether or not there is a nontrivial solution gives us a way to characterize the vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$.

Definition: Linear Dependence/Independence

An indexed set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots x_p\mathbf{v}_p=\mathbf{0}$$

has only the trivial solution.

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists a set of weights c_1, c_2, \dots, c_p at least one of which is nonzero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots c_p\mathbf{v}_p=\mathbf{0}.$$

(i.e. Provided the homogeneous equation possesses a nontrivial solution.)

An equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_p\mathbf{v}_p = \mathbf{0}$, with at least one $c_i \neq 0$, is called a **linear dependence relation**.

2 / 45

Special Cases

A set with two vectors $\{\boldsymbol{v}_1,\boldsymbol{v}_2\}$ is linearly dependent if one is a scalar multiple of the other.

Lin. dependence implies scolers
$$C_1, C_2$$
 such that $C_1 \vec{V}_1 + C_2 \vec{V}_2 = \vec{0}$ where at least one $C_1 \neq 0$.

We can assume
$$C_1 \neq 0$$
.
 $C_1\vec{V}_1 + C_2\vec{V}_2 = \vec{0} \implies C_1\vec{V}_1 = -C_2\vec{V}_2$

$$\Rightarrow \vec{V}_1 = \frac{-C_2}{C_1}\vec{V}_2 = \vec{k}\vec{V}_2$$
where the scalar $\vec{k} = \frac{-C_2}{C_1}$.

Example

Determine if the set is linearly dependent or linearly independent.

(a)
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ Dependent $\mathbf{v}_2 = \frac{1}{2} \vec{\mathbf{v}}_1$

we get a linear dependence relation
$$\frac{1}{2} \vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_2 = \vec{\mathbf{0}}$$

(b)
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ Linearly independent $\mathbf{v}_1 \neq \mathbf{k} \mathbf{v}_2$ for all

More than Two Vectors

Theorem: The columns of a matrix A are linearly **independent** if and only if the homogeneous equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Example: Determine if the set of vectors is linearly dependent or linearly independent. If they are dependent, find a linear dependence relation.

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right], \; \mathbf{v}_2 = \left[\begin{array}{c} 2 \\ 1 \\ 0 \end{array} \right], \; \mathbf{v}_3 = \left[\begin{array}{c} 4 \\ 1 \\ 0 \end{array} \right] \qquad \text{For} \qquad \text{A=[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]}$$

$$\begin{bmatrix}
 1 & 2 & 4 \\
 0 & 1 & 1 \\
 0 & 0 & 0
 \end{bmatrix}$$

This would have a free variable ond since we have 3 variables and only 2 pivot columns.

To get a linear dispersance relation Ship, do row reduction

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} \chi_1 = -2\chi_3 \\ \chi_2 = -\chi_3 \end{array}$$

Toking xo=-1 gives a linear dependence relation

$$\vec{2}\vec{V}_1 + \vec{V}_2 - \vec{V}_3 = \vec{0}$$

They are linearly dependent.

Theorem

An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example: Let u and v be any nonzero vectors in \mathbb{R}^3 . Show that if w is any vector in Span $\{u,v\}$, then the set $\{u,v,w\}$ is linearly **dependent**.

$$C_1\ddot{u} + C_2\ddot{v} - \ddot{w} = 0$$

This is a linear dependence relation since the coefficient of \vec{w} is -1 ± 0 .

Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$\mathbf{v}_1 = \left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight], \quad \mathbf{v}_2 = \left[egin{array}{c} 1 \\ 1 \\ 0 \end{array}
ight], \quad \text{and} \quad \mathbf{v}_3 = \left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight].$$

Examine each set $\{v_1, v_2\}$, $\{v_1, v_3\}$, $\{v_2, v_3\}$, and $\{v_1, v_2, v_3\}$.

The set
$$\{\vec{v}_1, \vec{v}_2\}$$
 is line independent. $\vec{v}_1 \neq k\vec{v}_3$ for any k or vice versa. Similarly, $\{\vec{v}_1, \vec{v}_3\}$ is $\lim_{n \to \infty} \int_{-\infty}^{\infty} |\vec{v}_1|^2 dv$.

August 25, 2017

9 / 45

Two More Theorems

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly **dependent**. That is, if $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is a set of vector in \mathbb{R}^n , and p > n, then the set is linearly dependent.

Theorem: Any set of vectors that contains the zero vector is linearly dependent. (3, 1) (3, 1) (3, 1) has linear dependent.

relation
$$0\vec{v}_1 + 0\vec{v}_2 + 1\cdot\vec{0} = \vec{0}$$

Determine if the set is linearly dependent or linearly independent

(a)
$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\3\\-5 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3 \end{bmatrix} \right\}$$

4 vectors in $\mathbb{R}^3 \implies$

they are line dependent.

Determine if the set is linearly dependent or linearly independent

(b)
$$\left\{ \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\-8\\1 \end{bmatrix}, \right\}$$
This set contains 0 in R...
$$1 \text{ is lin. dependent.}$$

Section 1.8: Intro to Linear Transformations

Recall that the product $A\mathbf{x}$ is a linear combination of the columns of A—turns out to be a vector. If the columns of A are vectors in \mathbb{R}^m , and there are n of them, then

- ightharpoonup A is an $m \times n$ matrix,
- ▶ the product $A\mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^n , and
- the vector $\mathbf{b} = A\mathbf{x}$ is a vector in \mathbb{R}^m .

So we can think of A as an **object that acts** on vectors \mathbf{x} in \mathbb{R}^n (via the product $A\mathbf{x}$) to produce vectors \mathbf{b} in \mathbb{R}^m .

Transformation from \mathbb{R}^n to \mathbb{R}^m

Definition: A transformation T (a.k.a. **function** or **mapping**) from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

Some relevant terms and notation include

- $ightharpoonup \mathbb{R}^n$ is the **domain** and \mathbb{R}^m is called the **codomain**.
- For x in the domain, T(x) is called the **image** of x under T.
- The collection of all images is called the range.
- ▶ The notation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ may be used to indicate that \mathbb{R}^n is the domain and \mathbb{R}^m is the codomain.
- ▶ If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A\mathbf{x}$.

Matrix <u>Transformation</u> Example

Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}$$
. Define the transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ by the mapping $T(\mathbf{x}) = A\mathbf{x}$.

(a) Find the image of the vector $\mathbf{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ under T.

$$T(\vec{\lambda}) = A\vec{\lambda} = \alpha_1 \vec{\alpha}_1 + \alpha_2 \vec{\alpha}_2 \qquad A = [\vec{\alpha}_1 \vec{\alpha}_2]$$

$$= 1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + (-3) \begin{bmatrix} 3 \\ 4 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - 9 \\ 2 - 12 \\ -4 \end{bmatrix} = \begin{bmatrix} -8 \\ -10 \\ 6 \end{bmatrix}$$

$$A = \left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{array} \right]$$

(b) Determine a vector \mathbf{x} in \mathbb{R}^2 whose image under T is $\begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$.

we won't to solve
$$A_{X}^{2} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$$

Solve the associated system all argumented matrix

$$\begin{bmatrix} 1 & 3 & -4 \\ 2 & 4 & -4 \\ 0 & -2 & 4 \end{bmatrix} = \begin{bmatrix} -2k_{1} + k_{2} & -2k_{2} \\ 1 & 3 & -4 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & -4 \\
2 & 4 & -4 \\
0 & -2 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 3 & -4 \\
0 & -2 & 4 \\
0 & -2 & 4
\end{bmatrix}$$

$$R_2 + R_3 \rightarrow R_3$$
then
$$\frac{1}{2}R_2 \rightarrow R_2$$

$$\begin{bmatrix} 1 & 3 & -4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \quad .3k_2 + k_1 \rightarrow k_1$$

$$\begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
\chi_1 = 2 \\
\chi_2 = -2
\end{pmatrix}$$

$$\alpha = \frac{50 \, \text{latient}}{15} \qquad \vec{\chi} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

$$A = \left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{array} \right]$$

(c) Determine if $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ is in the range of T. This can be restold as detunine if $Ax = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is solvable,

ix is the system consistent.

$$\begin{bmatrix} 1 & 3 & 1 \\ 2 & 4 & 0 \\ 0 & -2 & 1 \end{bmatrix} \xrightarrow{-2} \begin{bmatrix} 1 & 4 & 1 \\ 2 & 4 & 1 \\ 0 & -2 & -2 \\ 0 & -2 & 1 \end{bmatrix}$$

Linear Transformations

Definition: A transformation *T* is **linear** provided

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for every $\mathbf{u}.\mathbf{v}$ in the domain of T, and
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

Every matrix transformation (e.g. $\mathbf{x} \mapsto A\mathbf{x}$) is a linear transformation. And it turns out that every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be expressed in terms of matrix multiplication.

A Theorem About Linear Transformations:

If T is a linear transformation, then

$$T(\mathbf{0}) = \mathbf{0},$$

$$T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$$

for scalars c, d and vectors \mathbf{u} . \mathbf{v} .

And in fact

$$T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k) = T(c_1\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \dots + c_kT(\mathbf{u}_k).$$

$$= c_1 T(\vec{a}_1) + c_2T(\vec{a}_2) + \dots + c_kT(\vec{a}_k).$$

Example

Let r be a nonzero scalar. The transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by

$$T(\mathbf{x}) = r\mathbf{x}$$

is a linear transformation¹. Show that T is a linear transformation.

For
$$\vec{a}$$
, \vec{d} in \mathbb{R}^2

$$T(\vec{a}+\vec{v}) = r(\vec{a}+\vec{v}) = r\vec{a}+r\vec{v} = T(\vec{a}) + T(\vec{v})$$

$$T(\vec{a}) = r(\vec{a}+\vec{v}) = r(\vec{a}+\vec{v}) = r\vec{a}+r\vec{v} = T(\vec{a}) + T(\vec{v})$$

For any Scolar C
$$T(c\vec{u}) = r \cdot c\vec{h} = cr\vec{u} = c \cdot T(\vec{u})$$

$$T(\vec{u})$$

So T is a linear transformation.

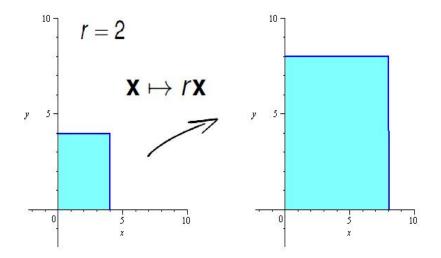


Figure: Geometry of dilation $\mathbf{x}\mapsto 2\mathbf{x}.$ The 4 by 4 square maps to an 8 by 8 square.

Section 1.9: The Matrix for a Linear Transformation

Elementary Vectors: We'll use the notation \mathbf{e}_i to denote the vector in \mathbb{R}^n having a 1 in the i^{th} position and zero everywhere else.

e.g. in \mathbb{R}^2 the elementary vectors are

$$\boldsymbol{e}_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \quad \text{and} \quad \boldsymbol{e}_2 = \left[\begin{array}{c} 0 \\ 1 \end{array} \right],$$

in \mathbb{R}^3 they would be

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

and so forth.

Note that in \mathbb{R}^n , the elementary vectors are the columns of the identity

Matrix of Linear Transformation

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ be a linear transformation, and suppose

$$T(\mathbf{e}_1) = \left[egin{array}{c} 0 \\ 1 \\ -2 \\ 4 \end{array}
ight], \quad ext{and} \quad T(\mathbf{e}_2) = \left[egin{array}{c} 1 \\ 1 \\ -1 \\ 6 \end{array}
ight].$$

Use the fact that T is linear, and the fact that for each \mathbf{x} in \mathbb{R}^2 we have

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

to find a matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^2$.

$$T(\mathbf{e}_1) = \begin{bmatrix} 0 \\ 1 \\ -2 \\ 4 \end{bmatrix}$$
, and $T(\mathbf{e}_2) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 6 \end{bmatrix}$ For any \mathbf{x} in \mathbb{R}^2

$$T(\vec{\chi}) = T(\chi_{1}\vec{e}_{1} + \chi_{2}\vec{e}_{2})$$

$$= \chi_{1}T(\vec{e}_{1}) + \chi_{2}T(\vec{e}_{2})$$

$$= \chi_{1}\begin{bmatrix}0\\-2\\4\end{bmatrix} + \chi_{2}\begin{bmatrix}1\\-1\\6\end{bmatrix} = \begin{bmatrix}0\\1\\2&-1\\4\\4\end{bmatrix}\begin{bmatrix}\chi_{1}\\\chi_{2}\end{bmatrix}$$

$$T(\vec{e}_{1})$$

So
$$A = [T(\vec{e}_i) T(\vec{e}_i)]$$

Theorem

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the j^{th} column of the matrix A is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the j^{th} column of the $n \times n$ identity matrix I_n . That is,

$$A = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)].$$

The matrix A is called the **standard matrix** for the linear transformation T.

Example

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the scaling transformation (contraction or dilation for r > 0) defined by

$$T(\mathbf{x}) = r\mathbf{x}$$
, for positive scalar r .

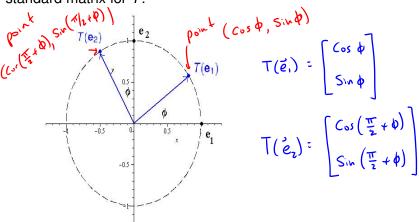
Find the standard matrix for T.

andard matrix for
$$T$$
.

 $\vec{e}_i = \begin{bmatrix} i \\ o \end{bmatrix} \Rightarrow T(\vec{e}_i) = \Gamma\begin{bmatrix} i \\ o \end{bmatrix} = \begin{bmatrix} 0 \\ i \end{bmatrix}$
 $\vec{e}_2 = \begin{bmatrix} 0 \\ i \end{bmatrix} \Rightarrow T(\vec{e}_2) = \Gamma\begin{bmatrix} 0 \\ i \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Example

Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the rotation transformation that rotates each point in \mathbb{R}^2 counter clockwise about the origin through an angle ϕ . Find the standard matrix for T.



Recall
$$G_{s}(\frac{\pi}{2}+\phi) = G_{s}\frac{\pi}{2}(o_{s}\phi - S_{ih}\frac{\pi}{2}S_{ih}\phi)$$

$$= -S_{ih}\phi$$

$$S_{m}(\frac{\pi}{2}+\phi) = S_{im}\frac{\pi}{2}(o_{s}\phi + S_{ih}\phi)G_{os}\frac{\pi}{2}$$

$$= G_{s}\phi$$

$$S_{s} + he Standard matrix
$$A = \begin{bmatrix} G_{s}\phi & -S_{ih}\phi \\ S_{ih}\phi & G_{s}\phi \end{bmatrix}$$

$$S_{ih}\phi = G_{s}\phi$$$$

Example²

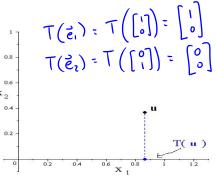
Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the projection tranformation that projects each point onto the x_1 axis

$$T\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right)=\left[\begin{array}{c}x_1\\0\end{array}\right].$$

Find the standard matrix for T.

So the matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$



²See pages 73–75 in Lay for matrices associated with other geometric $\stackrel{>}{=}$ $\stackrel{>}{=}$ $\stackrel{>}{\sim}$ $\stackrel{>}{\sim}$ $\stackrel{>}{\sim}$ $\stackrel{>}{\sim}$ $\stackrel{>}{\sim}$ August 25, 2017 35/45