August 29 Math 3260 sec. 58 Fall 2017

Section 1.7: Linear Independence

Definition An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution.
The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists a set of weights $c_{1}, c_{2}, \ldots, c_{p}$ at least one of which is nonzero such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

(i.e. Provided the homogeneous equation possesses a nontrivial solution.)

An equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}$, with at least one $c_{i} \neq 0$, is called a linear dependence relation.

Two or More Vectors

A set with two vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if one is a scalar multiple of the other.

Theorem: The columns of a matrix A are linearly independent if and only if the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Example
Determine if the set of vectors is linearly dependent or linearly independent. If they are dependent, find a linear dependence relation.
$\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}4 \\ 1 \\ 0\end{array}\right] \quad \begin{aligned} & \text { we con consider the } \\ & \text { equation } A \vec{x}=\overrightarrow{0}\end{aligned}$ where $A=\left[\begin{array}{lll}\vec{v}_{1} & \hat{v}_{2} & \vec{v}_{3}\end{array}\right]$

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \quad-2 R_{2}+R_{1} \div R_{1}
$$

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

3 vaicbles, 2 pivots, so then is a free variable.

Then is a rontrivid solution \Rightarrow the vectors ane lin. dependent.

$$
\begin{array}{ll}
x_{1}=-2 x_{3} \\
x_{2}=-x_{3} & \text { Taking } x_{3}=-1, \text { then } x_{1}=2 \\
x_{3}-\text { free } &
\end{array}
$$

we get a lin. dependence relation

$$
2 \vec{v}_{1}+\vec{v}_{2}-\vec{v}_{3}=\overrightarrow{0}
$$

Theorem
An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example: Let \mathbf{u} and \mathbf{v} be any nonzero vectors in \mathbb{R}^{3}. Show that if \mathbf{w} is any vector in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, then the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

Since \vec{w} is in $\operatorname{Spon}\{\vec{u}, \vec{v}\}$, there exist sealers
C_{1}, C_{2} such that

$$
\vec{w}=C_{1} \vec{u}+C_{2} \stackrel{\rightharpoonup}{v}
$$

Subtract \vec{w} to obtain

$$
c_{1} \vec{u}+c_{2} \vec{v}-\vec{w}=\overrightarrow{0}
$$

The coefficient of \vec{w} is $-1 \neq 0$. Hence this is a linear dependence relation and $\{\vec{u}, \vec{v}, \vec{w}\}$ is lin. dependent.

Caveat!
A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Examine each set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\},\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\},\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
$\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is lin. independent since $\vec{v}_{1} \neq k \vec{v}_{2}$ for on y sola h and vice versa.

Similarly $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$ and $\left\{\vec{v}_{1}, \vec{v}_{3}\right\}$ are lin. independent.
But $\left\{\vec{v}_{1}, \dot{v}_{2}, j_{3}\right\}$ is lin. dependent $\sin u$

$$
\vec{v}_{3}=\vec{v}_{2}-\vec{v}_{1}
$$

Two More Theorems

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is a set of vector in \mathbb{R}^{n}, and $p>n$, then the set is linearly dependent.

$$
\begin{aligned}
& \text { e.g. } S \text { vectors in } \mathbb{R}^{2} \\
& \text { or } 32 \text { vectors in } \mathbb{R}^{21}
\end{aligned}
$$

Theorem: Any set of vectors that contains the zero vector is linearly dependent.

Determine if the set is linearly dependent or linearly independent
(a) $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ 3 \\ -5\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]\right\}$

Lin. dependent. 4 vectors in \mathbb{R}^{3}

Determine if the set is linearly dependent or linearly independent
(b) $\left\{\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 4 \\ -8 \\ 1\end{array}\right],\right\}$

Lin. Deponent since the $\overrightarrow{0}$ is in it.

Section 1.8: Intro to Linear Transformations

Recall that the product $\boldsymbol{A x}$ is a linear combination of the columns of A-turns out to be a vector. If the columns of A are vectors in \mathbb{R}^{m}, and there are n of them, then

- A is an $m \times n$ matrix,
- the product $A \mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^{n}, and
- the vector $\mathbf{b}=A \mathbf{x}$ is a vector in \mathbb{R}^{m}.

So we can think of A as an object that acts on vectors \mathbf{x} in \mathbb{R}^{n} (via the product $A \mathbf{x}$) to produce vectors \mathbf{b} in \mathbb{R}^{m}.

Transformation from \mathbb{R}^{n} to \mathbb{R}^{m}

Definition: A transformation T (a.k.a. function or mapping) from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}.

Some relevant terms and notation include
$-\mathbb{R}^{n}$ is the domain and \mathbb{R}^{m} is called the codomain.

- For \mathbf{x} in the domain, $T(\mathbf{x})$ is called the image of \mathbf{x} under T.
- The collection of all images is called the range.
- The notation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ may be used to indicate that \mathbb{R}^{n} is the domain and \mathbb{R}^{m} is the codomain.
- If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A \mathbf{x}$.

Matrix Transformation Example Let $A=\left[\begin{array}{cc}1 & 3 \\ 2 & 4 \\ 0 & -2\end{array}\right]$. Define the transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ by the mapping $T(\mathbf{x})=A \mathbf{x}$.
(a) Find the image of the vector $\mathbf{u}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$ under T.

$$
T(\vec{u})=A \vec{u}=1\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+(-3)\left[\begin{array}{c}
3 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{cc}
1 & -9 \\
2-12 \\
0+6
\end{array}\right]=\left[\begin{array}{c}
-8 \\
-10 \\
6
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]
$$

(b) Determine a vector \mathbf{x} in \mathbb{R}^{2} whose image under T is

$$
\begin{aligned}
& \left.T(\vec{x})=x_{1}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
3 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-4 \\
4
\end{array}\right] \quad \text { if } \quad \begin{array}{c}
4
\end{array}\right] \\
& \left.\Rightarrow \quad \begin{array}{l}
x_{1}+3 x_{2}=-4 \\
2 x_{1}+4 x_{2}
\end{array}\right] \\
& -2 x_{2}=4
\end{aligned} \quad \text { Solve (if possible) }
$$

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
1 & 3 & -4 \\
0 & -2 & 4 \\
0 & -2 & 4
\end{array}\right] \begin{array}{l}
-R_{2}+R_{3}+R_{3} \\
\text { then } \\
-\frac{1}{2} R_{2}+R_{2}
\end{array}\left[\begin{array}{ccc}
1 & 3 & -4 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]} \\
-3 R_{2}+R_{1} \rightarrow R_{1}
\end{array}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]\right] \text { (} \begin{gathered}
\Rightarrow \begin{array}{l}
x_{1}=2 \\
x_{2}=-2
\end{array} \\
\text { So } \vec{x}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] .
\end{gathered}
$$

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]
$$

(c) Determine if $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is in the range of T. Is there \vec{x} such that $T(\vec{x})=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$?

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 3 & 1 \\
2 & 4 & 0 \\
0 & -2 & 1
\end{array}\right]-2 R_{1}+R_{2}+R_{2}\left[\begin{array}{ccc}
1 & 3 & 1 \\
0 & -2 & -2 \\
0 & -2 & 1
\end{array}\right]} \\
-R_{2}+R_{3}+R_{3}
\end{gathered}
$$

$\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is not in the range of T.

Linear Transformations

Definition: A transformation T is linear provided
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

Every matrix transformation (e.g. $\mathbf{x} \mapsto A \mathbf{x}$) is a linear transformation. And it turns out that every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} can be expressed in terms of matrix multiplication.

A Theorem About Linear Transformations:

If T is a linear transformation, then

$$
\begin{gathered}
T(\mathbf{0})=\mathbf{0} \\
T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})
\end{gathered}
$$

for scalars c, d and vectors u.v.

And in fact

$$
\begin{aligned}
T\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}\right) & =T\left(c_{1} \mathbf{u}_{1}\right)+c_{2} T\left(\mathbf{u}_{2}\right)+\cdots+c_{k} T\left(\mathbf{u}_{k}\right) . \\
& =c_{1} T\left(\vec{u}_{1}\right)+c_{2} T\left(\vec{u}_{2}\right)+\cdots+c_{k} T\left(\vec{u}_{k}\right) .
\end{aligned}
$$

Example

Let r be a nonzero scalar. The transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ defined by

$$
T(\mathbf{x})=r \mathbf{x}
$$

is a linear transformation ${ }^{1}$.
Show that T is a linear transformation.

$$
\begin{aligned}
& \text { If } \vec{u}, \vec{v} \text { are in } \mathbb{R}^{2} \\
& T(\vec{u}+\vec{v})=r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}=T(\vec{u})+T(\vec{v}) \\
& \quad T(\vec{u}) \quad T(\vec{v})
\end{aligned}
$$

${ }^{1}$ It's called a contraction if $0<r<1$ and a dilation when $r>1$

For scalen C

$$
T(c \vec{u})=r c \vec{u}=\underset{\sim}{c} \underset{T(\vec{u})}{ }=c T(\vec{u})
$$

Tsatisfies both propenties. Hence it is a limea transformotion.

Figure: Geometry of dilation $\mathbf{x} \mapsto \mathbf{2 x}$. The 4 by 4 square maps to an 8 by 8 square.

Section 1.9: The Matrix for a Linear Transformation

Elementary Vectors: We'll use the notation \mathbf{e}_{i} to denote the vector in \mathbb{R}^{n} having a 1 in the $i^{i t h}$ position and zero everywhere else. e.g. in \mathbb{R}^{2} the elementary vectors are

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

in \mathbb{R}^{3} they would be

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and so forth.
Note that in \mathbb{R}^{n}, the elementary vectors are the columns of the identity I_{n}.

Matrix of Linear Transformation

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{4}$ be a linear transformation, and suppose

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right], \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
6
\end{array}\right] .
$$

Use the fact that T is linear, and the fact that for each \mathbf{x} in \mathbb{R}^{2} we have

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=x_{2} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}
$$

to find a matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{2} .
$$

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right], \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
6
\end{array}\right] \\
& T(\vec{x})=T\left(x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}\right)=x_{1} T\left(\vec{e}_{1}\right)+x_{2} T\left(\vec{e}_{2}\right) \\
&=x_{1}\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
6
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & 1 \\
-2 & -1 \\
4 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=A \vec{x}
\end{aligned}
$$

So the motrix A should be

$$
A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]
$$

Theorem

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{n} .
$$

Moreover, the $j^{\text {th }}$ column of the matrix A is the vector $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the $j^{\text {th }}$ column of the $n \times n$ identity matrix I_{n}. That is,

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right] .
$$

The matrix A is called the standard matrix for the linear transformation T.

Example
Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the scaling trasformation (contraction or dilation for $r>0$) defined by

$$
T(\mathbf{x})=r \mathbf{x}, \quad \text { for positive scalar } r
$$

Find the standard matrix for T.

$$
\begin{aligned}
& \vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad T\left(\vec{e}_{1}\right)=r \vec{e}_{1}=r\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right] \\
& \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad T\left(\vec{e}_{2}\right)=r \vec{e}_{2}=r\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
r
\end{array}\right]
\end{aligned}
$$

The stand ord matrix

$$
A=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]
$$

Example
Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the rotation trasformation that rotates each point in \mathbb{R}^{2} counter clockwise about the origin through an angle ϕ. Find the standard matrix for T.

Recall

$$
\begin{aligned}
\cos \left(\frac{\pi}{2}+\phi\right) & =\cos \frac{\pi}{2} \cos \phi-\sin \frac{\pi}{2} \sin \phi \\
& =-\sin \phi \\
\sin \left(\frac{\pi}{2}+\phi\right) & =\sin \frac{\pi}{2} \cos \phi+\sin \phi \cos \frac{\pi}{2} \\
& =\cos \phi
\end{aligned}
$$

The standard matrix

$$
A=\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

Example ${ }^{2}$

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the projection tranformation that projects each point onto the x_{1} axis

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right] .
$$

Find the standard matrix for T.

$$
T\left(\vec{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The standard matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

[^0]
One to One, Onto

Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}-i.e. if the range of T is all of the codomain.

$$
\vec{b}=T(\vec{x}) \text { is soluoble for all } \vec{b} \text { in } \mathbb{R}^{n}
$$

Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be one to one if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

$$
T(\vec{x})=T(\vec{y}) \Leftrightarrow \vec{x}=\vec{y}
$$

Determine if the transformation is one to one, onto, neither or both.

$$
T(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \mathbf{x}
$$

Check onetrone: Suppose $T(\vec{x})=T(\vec{y})$.
Then $T(\vec{x})-T(\vec{y})=\overrightarrow{0}$

$$
T(\vec{x}-\vec{y})=\overrightarrow{0}
$$

If there is a nontrivice solution, then \vec{x} doesn't hove to equal \vec{y} ! The mapping wald not be one to one.

Cons ide

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \vec{x}=\overrightarrow{0}
$$

$\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0\end{array}\right] \quad \begin{aligned} & 3 \text { variables, } 2 \text { pivots } \\ & \text { so then is a flee variable, }\end{aligned}$

$$
\begin{aligned}
& x_{1}=-2 x_{3} \\
& x_{2}=-3 x_{3} \\
& x_{3}-f_{1} \text { ce }
\end{aligned}
$$

verity that

$$
\vec{x}=\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right] \text { and } \vec{y}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

satist $T(\vec{x})=T(\vec{y})$ but

$$
\vec{x} \neq \stackrel{\rightharpoonup}{y} .
$$

The transformation is not one to one.

[^0]: ${ }^{2}$ See pages 73-75 in Lay for matrices associated with other geometric tranformation on \mathbb{R}^{2}

