August 29 Math 3260 sec. 58 Fall 2017

Section 1.7: Linear Independence

Definition An indexed set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists a set of weights c_1, c_2, \dots, c_p at least one of which is nonzero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots c_p\mathbf{v}_p=\mathbf{0}.$$

(i.e. Provided the homogeneous equation possesses a nontrivial solution.)

An equation $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$, with at least one $c_i \neq 0$, is called a **linear dependence relation**.

Two or More Vectors

A set with two vectors $\{\bm{v}_1, \bm{v}_2\}$ is linearly dependent if one is a scalar multiple of the other.

Theorem: The columns of a matrix *A* are linearly **independent** if and only if the homogeneous equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Example

Determine if the set of vectors is linearly dependent or linearly independent. If they are dependent, find a linear dependence relation.

$$\begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \cdot 2R_2 + R_1 \Rightarrow R_1$$

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{pivots, so then}}$$

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{is a free}}$$

$$\text{Variable.}$$

イロト 不得 トイヨト イヨト 二日

There is a non-trivial solution => the vectors are lin. dependent.

$$X_1 = -2X_3$$
 Taking $X_3 = -1$, then $X_1 = 2$
 $X_2 = -X_3$ and $X_2 = 1$
 $X_3 = 4ree$

Le get a lin. dependence relation $Z\vec{V}_1 + \vec{V}_2 - \vec{V}_3 = \vec{O}$

> < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで August 25, 2017 4 / 43

Theorem

An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example: Let **u** and **v** be any nonzero vectors in \mathbb{R}^3 . Show that if **w** is any vector in Span{**u**, **v**}, then the set {**u**, **v**, **w**} is linearly **dependent**.

イロト イポト イヨト イヨト

$$c_{1}\dot{u} + c_{2}\dot{v} - \dot{w} = 0$$

The coefficient of
$$\overline{w}$$
 is $-1 \neq 0$. Hence this
is a linear dypendence relation and
 $\{\overline{w}, \overline{v}, \overline{w}\}$ is \overline{v} , dependent,

Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \text{ and } \mathbf{v}_3 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}.$$

 $\text{Examine each set } \{ \bm{v}_1, \bm{v}_2 \}, \, \{ \bm{v}_1, \bm{v}_3 \}, \, \{ \bm{v}_2, \bm{v}_3 \}, \, \text{and} \, \{ \bm{v}_1, \bm{v}_2, \bm{v}_3 \}.$

$$\{\vec{V}_1, \vec{J}_2\}$$
 is lin. independent since $\vec{U}_1 \neq k\vec{V}_2$ for any
scalar k and vice Versa.
Similarly $\{\vec{V}_2, \vec{J}_3\}$ and $\{\vec{V}_1, \vec{J}_3\}$ are Din. independent
But $\{\vec{J}_1, \vec{V}_2, \vec{J}_3\}$ is Jin. dependent since
 $\vec{V}_2 = \vec{V}_2 - \vec{V}_1$

August 25, 2017 7 / 43

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Two More Theorems

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly **dependent**. That is, if $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ is a set of vector in \mathbb{R}^n , and p > n, then the set is linearly dependent.

Theorem: Any set of vectors that contains the zero vector is linearly **dependent**.

Determine if the set is linearly dependent or linearly independent

(a)
$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\3\\-5 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3 \end{bmatrix} \right\}$$

Line dependent. 4 vectors in \mathbb{R}^3 .

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへぐ August 25, 2017 10 / 43

Determine if the set is linearly dependent or linearly independent

(b)
$$\left\{ \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\-8\\1 \end{bmatrix}, \right\}$$

Lin. Dependent since the \vec{O} is in it.

イロト イヨト イヨト イヨト August 25, 2017 11/43

э

Section 1.8: Intro to Linear Transformations

Recall that the product $A\mathbf{x}$ is a linear combination of the columns of A—turns out to be a vector. If the columns of A are vectors in \mathbb{R}^m , and there are n of them, then

- A is an $m \times n$ matrix,
- the product $A\mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^n , and
- the vector $\mathbf{b} = A\mathbf{x}$ is a vector in \mathbb{R}^m .

So we can think of *A* as an **object that acts** on vectors \mathbf{x} in \mathbb{R}^n (via the product $A\mathbf{x}$) to produce vectors \mathbf{b} in \mathbb{R}^m .

August 25, 2017

12/43

Transformation from \mathbb{R}^n to \mathbb{R}^m

Definition: A transformation T (a.k.a. function or mapping) from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector **x** in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

Some relevant terms and notation include

- \triangleright \mathbb{R}^n is the **domain** and \mathbb{R}^m is called the **codomain**.
- For **x** in the domain, $T(\mathbf{x})$ is called the **image** of **x** under T.
- The collection of all images is called the range.
- The notation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ may be used to indicate that \mathbb{R}^n is the domain and \mathbb{R}^m is the codomain.
- If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A\mathbf{x}$

イロト 不得 トイヨト イヨト ヨー ろくの August 25, 2017

13/43

Matrix Transformation Example Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}$. Define the transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ by the mapping $T(\mathbf{x}) = A\mathbf{x}$.

(a) Find the image of the vector $\mathbf{u} = \begin{vmatrix} 1 \\ -3 \end{vmatrix}$ under *T*.

$$T(\vec{x}) = A\vec{x} = 1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + (-3) \begin{bmatrix} 3 \\ 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 - 9 \\ 2 - 12 \\ 0 + 6 \end{bmatrix} = \begin{bmatrix} -8 \\ -10 \\ 6 \end{bmatrix}$$

$$A = \left[\begin{array}{rrr} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{array} \right]$$

(b) Determine a vector **x** in \mathbb{R}^2 whose image under *T* is $\begin{vmatrix} -4 \\ -4 \\ 4 \end{vmatrix}$. $T(\vec{x}) = X_{1} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + X_{2} \begin{bmatrix} 3 \\ 4 \\ -2 \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \\ -3 \end{bmatrix} \qquad (f \quad \vec{x} = \begin{bmatrix} 4 \\ -4 \\ -2 \end{bmatrix}$ some (if possible) X, +3 X2 = -4 2x, +4 X2 = -4 =) $\begin{pmatrix} 1 & 3 & -4 \\ 2 & 4 & -4 \\ -2 & 4 & -4 \\ -2 & 4 \end{pmatrix} = -2R_1 + R_2 = R_2$ -2×1 = 4

August 25, 2017 15 / 43

B + 4 B +

A D M A A A M M

$$\begin{bmatrix} 1 & 3 & -4 \\ 0 & -2 & 4 \\ 0 & -2 & 4 \end{bmatrix} \xrightarrow{-R_2 + R_3 \to R_3} \begin{bmatrix} 1 & 3 & -4 \\ 0 & 1 & -2 \\ -\frac{1}{2}R_2 \to R_2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{-3R_2 + R_1 \to R_1} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{array}{c} X_{1} \neq 2 \\ X_{2} \neq -2 \end{array}$$

$$S_{0} \quad \stackrel{?}{X} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}$$
(c) Determine if $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ is in the range of T .
Is thus \vec{x} such that $T(\vec{x}) = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix}$

$$\begin{bmatrix} 1 & 3 & 1 \\ 2 & 4 & 0 \\ 0 & -2 & 1 \end{bmatrix} -2R_1 \neq R_2 \neq R_1$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & -2 & -2 \\ 0 & -2 & 1 \end{bmatrix}$$

$$-R_2 \neq R_3 \neq R_3$$

August 25, 2017 17 / 43

August 25, 2017 18 / 43

Linear Transformations

Definition: A transformation T is linear provided

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of *T*, and
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every scalar *c* and vector **u** in the domain of *T*.

Every matrix transformation (e.g. $\mathbf{x} \mapsto A\mathbf{x}$) is a linear transformation. And it turns out that every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be expressed in terms of matrix multiplication.

A Theorem About Linear Transformations:

If T is a linear transformation, then

 $T(\mathbf{0}) = \mathbf{0},$ $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$

for scalars *c*, *d* and vectors **u**.**v**.

And in fact

$$T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k) = T(c_1\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \dots + c_kT(\mathbf{u}_k).$$

$$: c_1 \mathsf{T}(\vec{\omega}_1) + c_2\mathsf{T}(\vec{\omega}_2) + \dots + c_k\mathsf{T}(\vec{\omega}_k).$$

August 25, 2017 20 / 43

- 34

Example

Let *r* be a nonzero scalar. The transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by

$$T(\mathbf{x}) = r\mathbf{x}$$

is a linear transformation¹.

Show that T is a linear transformation.

$$f \vec{x}, \vec{v} \propto in \mathbb{R}^{2}$$

$$T(\vec{x} + \vec{v}) = r(\vec{x} + \vec{v}) = r\vec{h} + r\vec{v} = T(\vec{x}) + T(\vec{v})$$

$$\int \int \int T(\vec{v}) T(\vec{v}) = T(\vec{v})$$

¹It's called a **contraction** if 0 < r < 1 and a **dilation** when $r \ge 1 < z \ge z \ge 2$ 0 < 0August 25.2017 21/43

For scoler c $T(c\vec{u}) = rc\vec{u} = cr\vec{u} = cT(\vec{u})$ $T(\vec{u})$ T satisfies both properties. Hence it is a linear transformation.

Figure: Geometry of dilation $\mathbf{x} \mapsto 2\mathbf{x}$. The 4 by 4 square maps to an 8 by 8 square.

Section 1.9: The Matrix for a Linear Transformation

Elementary Vectors: We'll use the notation \mathbf{e}_i to denote the vector in \mathbb{R}^n having a 1 in the *i*th position and zero everywhere else.

e.g. in \mathbb{R}^2 the elementary vectors are

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$,

in \mathbb{R}^3 they would be

$$\boldsymbol{e}_1 = \left[\begin{array}{c} 1\\ 0\\ 0 \end{array} \right], \quad \boldsymbol{e}_2 = \left[\begin{array}{c} 0\\ 1\\ 0 \end{array} \right], \quad \text{and} \quad \boldsymbol{e}_3 = \left[\begin{array}{c} 0\\ 0\\ 1 \end{array} \right]$$

and so forth.

Note that in \mathbb{R}^n , the elementary vectors are the columns of the identity I_n .

August 25, 2017

24/43

Matrix of Linear Transformation

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ be a linear transformation, and suppose

$$T(\mathbf{e}_1) = \begin{bmatrix} 0\\1\\-2\\4 \end{bmatrix}, \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} 1\\1\\-1\\6 \end{bmatrix}$$

Use the fact that T is linear, and the fact that for each \mathbf{x} in \mathbb{R}^2 we have

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_2 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

to find a matrix A such that

$$\mathcal{T}(\mathbf{x}) = \mathcal{A}\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^2$.

イロト 不得 トイヨト イヨト 二日

August 25, 2017

25/43

$$T(\mathbf{e}_1) = \begin{bmatrix} 0\\1\\-2\\4 \end{bmatrix}, \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} 1\\1\\-1\\6 \end{bmatrix}$$

$$T(\vec{x}) = T(x, \vec{e}, + x_{1}\vec{e}_{2}) = x_{1} T(\vec{e}_{1}) + x_{2} T(\vec{e}_{2})$$

$$= x_{1} \begin{bmatrix} 0 \\ 1 \\ -2 \\ 4 \end{bmatrix} + x_{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ -2 & -1 \\ 4 & 6 \end{bmatrix}$$

So the motion A should be $A = \left[T(\vec{e}_1) \ T(\vec{e}_2) \right].$

<ロ> <四> <四> <四> <四> <四</p>

Theorem

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the *j*th column of the matrix A is the vector $T(\mathbf{e}_i)$, where \mathbf{e}_i is the *j*th column of the $n \times n$ identity matrix I_n . That is,

$$A = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)].$$

August 25, 2017

28/43

The matrix A is called the standard matrix for the linear transformation $T_{\rm c}$

Example

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the scaling trasformation (contraction or dilation for r > 0) defined by

 $T(\mathbf{x}) = r\mathbf{x}$, for positive scalar *r*.

August 25, 2017

29/43

Find the standard matrix for T. $\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad T(\vec{e}_1) = r\vec{e}_1 = r \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad T(\vec{e}_2) = r\vec{e}_2 = r \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ r \end{bmatrix}$ The standard matrix $A = \begin{bmatrix} 0 \\ 0 \\ r \end{bmatrix}$.

Example

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the rotation transformation that rotates each point in \mathbb{R}^2 counter clockwise about the origin through an angle ϕ . Find the standard matrix for T.

Recoll
$$\cos\left(\frac{\pi}{2} + \phi\right) = \cos\frac{\pi}{2}\cos\phi - \sin\frac{\pi}{2}\sin\phi$$

 $= -\sin\phi$
 $\sin\left(\frac{\pi}{2} + \phi\right) = \sin\frac{\pi}{2}\cos\phi + \sin\phi\cos\frac{\pi}{2}$
 $= \cos\phi$
 $\sin\phi$
 $\sin\phi$
 $\sin\phi$
 $\sin\phi$
 $\sin\phi$
 $\sin\phi$
 $\sin\phi$
 $\cos\phi$
 $\sin\phi$
 $\cos\phi$
 $\sin\phi$
 $\(\pi\phi$
 $\(\pi\phi)$
 $(\pi\phi)$
 $(\pi\phi)$
 $(\pi\phi)$
 $(\pi\phi)$
 $(\pi\phi)$
 $(\pi\phi)$
 $(\pi\phi)$
 $(\pi\phi)$
 $(\pi\phi)$
 $(\pi\phi$

August 25, 2017 32 / 43

Example²

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the projection tranformation that projects each point onto the x_1 axis

²See pages 73–75 in Lay for matrices associated with other geometric $\mathbb{P} = -9$ (contransformation on \mathbb{R}^2 August 25, 2017 33/43

One to One, Onto

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n -i.e. if the range of *T* is all of the codomain.

B=T(x) is solvable for all bin R

Definition: A mapping $\mathcal{T} : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **one to one** if each **b** in \mathbb{R}^m is the image of **at most one x** in \mathbb{R}^n .

 $T(\vec{x}) = T(\vec{z}) \iff \vec{x} = \vec{y}$

August 25, 2017 35 / 43

イロト 不得 トイヨト イヨト ヨー ろくの

Determine if the transformation is one to one, onto, neither or both.

$$T(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \mathbf{x}.$$

Check one home: Suppose $T(\mathbf{x}) = T(\mathbf{z})$.
Then $T(\mathbf{z}) - T(\mathbf{z}) = \mathbf{0}$
 $T(\mathbf{z} - \mathbf{z}) = \mathbf{0}$
If there is a non-truice solution, then \mathbf{x} doesn't home to equal \mathbf{y} ! The mapping would not be one to one.
One to one.
Conside $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \mathbf{x} = \mathbf{0}$

August 25, 2017 36 / 43

August 25, 2017 37 / 43