August 31 Math 1190 sec. 51 Fall 2016

Section 1.3: Continuity

Compositions

Suppose $\lim _{x \rightarrow c} g(x)=L$, and f is continuous at L, then

$$
\lim _{x \rightarrow c} f(g(x))=f(L) \text { i.e. } \quad \lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right) .
$$

Theorem: If g is continuous at c and f is continuous at $g(c)$, then $(f \circ g)(x)$ is continuous at c.

Essentially, this says that "compositions of continuous functions are continuous."

Example
Suppose we know that $f(x)=e^{x}$ is continuous on $(-\infty, \infty)^{*}$. Evaluate

$$
\lim _{x \rightarrow \sqrt{\ln (3)}} e^{x^{2}+\ln (2)}
$$

If $g(x)=x^{2}+\ln 2$, then
g is continuous e $\sqrt{\ln 3}$

$$
\begin{aligned}
& \text { So } \begin{array}{l}
\lim _{x \rightarrow \sqrt{\ln 3}} e^{x^{2}+\ln 2} \quad \text { If } f(x)=e^{x} \text { then } \\
=e^{(\sqrt{\ln 3})^{2}+\ln 2} \quad e^{x^{2} \ln 2}=f(g(x)) \\
=e^{\ln 3+\ln 2}=e^{\ln 3} \cdot e^{\ln 2}=3 \cdot 2=6 \\
\\
\text { *This is true. }
\end{array} e^{a+b}=e^{a} \cdot e^{b}
\end{aligned}
$$

Inverse Functions

Theorem: If f is a one to one function that is continuous on its domain, then its inverse function f^{-1} is continuous on its domain.

Continuous functions (with inverses) have continuous inverses.

Theorem:
Intermediate Value Theorem (IVT) Suppose f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$. Then there exists c in the interval (a, b) such that $f(c)=N$.

Application of the IVT
Show that the equation has at least one solution in the interval.

$$
\sqrt{x-1}=4-x^{2} \quad 1 \leq x \leq 2
$$

Let $f(x)=\sqrt{x-1}-4+x^{2}$
Obsuvations: (1) If $f(c)=0$ then $\sqrt{c-1}-4+c^{2}=0$ ie. $\sqrt{c-1}=4-c^{2}$
c would solve our equation.
(2) f is the sum of continuous functions.

Hence it is continuous provided $x-1 \geqslant 0$ ie. $x \geq 1$.

Thus f is continuous on $[1,2]$.
$f(x)=\sqrt{x-1} \quad-4+x^{2} \quad$ here $\quad a=1 \quad b=2$

$$
\begin{array}{ll}
f(1)=\sqrt{1-1}-4+1^{2}=-3 & f(a)<0 \\
f(2)=\sqrt{2-1}-4+2^{2}=1 & f(b)>0
\end{array}
$$

The number $N=0$ is between $f(1)$ and $f(2)$, By the IVT, the ne exists some c in $(1,2)$ such that $f(c)=0$.

This doesit tell us what the root c is, but it does guarantee that ow equation $\sqrt{x-1}=4-x^{2}$ has at least one solution c in the interval $[1,2]$.

Section 1.4: Limits and Continuity of Trigonometric, Exponential and Logarithmic Functions

Here we list without proof ${ }^{\dagger}$ the continuity properties of several well known functions.
$\sin x$: The sine function $y=\sin x$ is continuous on its domain $(-\infty, \infty)$.
$\cos x$: The cosine function $y=\cos x$ is continuous on its domain $(-\infty, \infty)$.
e^{x} : The exponential function $y=e^{x}$ is continuous on its domain $(-\infty, \infty)$.
$\ln (x)$: The natural \log function $y=\ln (x)$ is continuous on its domain $(0, \infty)$.

[^0]
Additional Functions

- By the quotient property, each of $\tan x, \cot x, \sec x$ and $\csc x$ are continuous on each of their respective domains.
- For $a>0$ with $a \neq 1$, the function

$$
a^{x}=e^{x \ln a}
$$

$$
e^{x \ln a}=e^{\ln a^{x}}=a^{x}
$$

By the composition property, each exponential function $y=a^{x}$ is continuous on $(-\infty, \infty)$.

- For $a>0$ with $a \neq 1$, the function

$$
\log _{a}(x)=\frac{\ln x}{\ln a}
$$

By the constant multiple property, each logarithm function $y=\log _{a}(x)$ is continuous on $(0, \infty)$.

Example
Evaluate each limit.
(a)

$$
\begin{aligned}
\lim _{x \rightarrow \pi} \cos (x+\sin x) & =\cos (\pi+\sin \pi) \\
& =\cos (\pi+0)=\cos \pi=-1
\end{aligned}
$$

Composition of continuous functions
(b) $\lim _{t \rightarrow \frac{\pi}{4}} e^{\tan t}=e^{\tan \frac{\pi}{4}}=e^{1}=e$
$\frac{\pi}{4}$ is in the domain of $f(t)=\tan t$.

Question

Evaluate the limit $\lim _{x \rightarrow \pi} \ln \left(\cos ^{2} x\right)$.
(a) e
(b) 1

$$
\lim _{x \rightarrow \pi} \ln \left(\cos ^{2} x\right)=\ln \left(\cos ^{2} \pi\right)
$$

$$
=\ln \left((-1)^{2}\right)
$$

(c) DNE
(d) 0
$=\ln 1=0$

$$
e^{0}=1
$$

Squeeze Theorem:

Theorem: Suppose $f(x) \leq g(x) \leq h(x)$ for all x in an interval containing c except possibly at c. If

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L
$$

then

$$
\lim _{x \rightarrow c} g(x)=L
$$

Squeeze Theorem:

Figure: Graphical Representation of the Squeeze Theorem.

Example: Evaluate

For all θ, note

$$
\lim _{\theta \rightarrow 0} \theta^{2} \sin \frac{1}{\theta}
$$

$$
-1 \leq \sin \frac{1}{\theta} \leq 1
$$

Since $\theta^{2}>0 \quad-\theta^{2} \leq \theta^{2} \sin \frac{1}{\theta} \leq \theta^{2}$

$$
\lim _{\theta \rightarrow 0}-\theta^{2}=-0^{2}=0 \text { and } \lim _{\theta \rightarrow 0} \theta^{2}=0^{2}=0
$$

By the squeeze the $\lim _{\theta \rightarrow 0} \theta^{2} \sin \frac{1}{\theta}=0$ as well.
Here $f(\theta)=-\theta^{2}, h(\theta)=\theta^{2}$ and $g(\theta)=\theta^{2} \sin \frac{1}{\theta}$

A Couple of Important Limits Theorem: $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ and $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0$

lengths

$$
\begin{aligned}
& -\theta \quad(s=r \theta=1 \theta) \\
& -\tan \theta \quad\left(\frac{o p p}{a d j}=\frac{\text { opp }}{1}\right) \\
& \sin \theta \leq \theta \leq \tan \theta
\end{aligned}
$$

for small θ (near zeno)

Inequedits 1: $\quad \sin \theta \leqslant \theta \Rightarrow \frac{\sin \theta}{\theta} \leqslant 1$ for $\theta>0$

Since $\operatorname{Sin} \theta$ is odd we have $\frac{\sin \theta}{\theta} \leq 1$ for all $\begin{gathered}\text { srcel } \theta \text {. }\end{gathered}$

Inequdit 2: $\theta \leq \tan \theta \Rightarrow \theta \leq \frac{\sin \theta}{\cos \theta}$
for $\theta>0 \quad \cos \theta \leq \frac{\sin \theta}{\theta}$
Since $\sin \theta$ is odd and $\cos \theta$ is even
$\operatorname{Cos} \theta \leq \frac{\sin \theta}{\theta}$ for all small θ.
we have $\quad \cos \theta \leq \frac{\sin \theta}{\theta} \leq 1$

$$
\lim _{\theta \rightarrow 0} 1=1 \text { and } \lim _{\theta \rightarrow 0} \cos \theta=\cos 0=1
$$

By the squeeze tho

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

The statement $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0$ is offered without proof.

Important Observation

The character used in the limit statement is immaterial. That is,

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=\lim _{t \rightarrow 0} \frac{\sin t}{t}=\lim _{\varnothing \rightarrow 0} \frac{\sin (3 \circlearrowleft)}{3 \circlearrowleft}=1
$$

The key is that the argument of the sine matches the denominator with these tending to zero.

This is a limit. It should not be confused with the statement

$$
" \frac{\sin \theta}{\theta}=1 "
$$

which is NEVER true.

Examples
Evaluate each limit if possible.
(a)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin (4 x)}{x} \\
= & \lim _{x \rightarrow 0} \frac{\sin (4 x)}{x} \cdot \frac{4}{4} \\
= & \lim _{x \rightarrow 0} 4 \frac{\sin (4 x)}{4 x} \\
= & 4 \lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x}=4 \cdot 1=4
\end{aligned}
$$

Note

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x}=1
$$

Noble: the $4 x$ inside the sine is out of our control
(b)

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{2 t}{\tan (3 t)} & =\lim _{t \rightarrow 0} \frac{2 t}{\frac{\sin (3 t)}{\cos (3 t)}} \\
& =\lim _{t \rightarrow 0} \cos 3 t\left(\frac{2 t}{\sin 3 t}\right) \\
& =\lim _{t \rightarrow 0} 2 \cos 3 t\left(\frac{t}{\sin 3 t}\right) \cdot \frac{3}{3} \\
& =\lim _{t \rightarrow 0} \frac{2}{3} \cos 3 t\left(\frac{3 t}{\sin 3 t}\right) \\
& =\frac{2}{3} \lim _{t \rightarrow 0} \cos 3 t\left(\frac{3 t}{\sin 3 t}\right)
\end{aligned}
$$

$$
=\frac{2}{3} \cos (3 \cdot 0) \frac{1}{1}=\frac{2}{3} \cdot 1 \cdot 1=\frac{2}{3}
$$

[^0]: ${ }^{\dagger}$ You are already familiar with their graphs.

