August 31 Math 1190 sec. 52 Fall 2016
Section 1.3: Continuity
Compositions

Suppose )I([pc g(x) =L, and f is continuous at L, then

lim f(g(x)) =f(L) ie. lim f(g(x)):f()l(iincg(x))
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Theorem: If g is continuous at ¢ and f is continuous at g(c), then
(f o 9)(x) is continuous at c.

Essentially, this says that "compositions of continuous functions are
continuous.”



Example
Suppose we know that f(x) = e* is continuous on (—oo, c0)*. Evaluate
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*This is true.



Inverse Functions

Theorem: If f is a one to one function that is continuous on its domain,
then its inverse function f~! is continuous on its domain.

Continuous functions (with inverses) have continuous inverses.



Theorem:
Intermediate Value Theorem (IVT) Suppose f is continuous on the
closed interval [a, b] and let N be any number between f(a) and f(b).

Then there exists c in the interval (a, b) such that f(c) = N.
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Application of the IVT

Show that the equation has at least one solution in the interval.
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Section 1.4: Limits and Continuity of Trigonometric,
Exponential and Logarithmic Functions

Here we list without proof' the continuity properties of several well
known functions.

sin x: The sine function y = sin x is continuous on its domain (—oo, c0).

cos x: The cosine function y = cos x is continuous on its domain
(—00, 0).

e*: The exponential function y = e~ is continuous on its domain
(—OO, OO)

In(x): The natural log function y = In(x) is continuous on its domain
(0, 0).

"You are already familiar with their graphs.



Additional Functions

» By the quotient property, each of tan x, cot x, sec x and csc x are
continuous on each of their respective domains.
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» For a > 0 with a # 1, the function e e
x

a* =eha, TR

By the composition property, each exponential function y = a* is
continuous on (—oo, co).

» For a > 0 with a # 1, the function

In x

log,(x) = na

By the constant multiple property, each logarithm function
y =log,(x) is continuous on (0, co).



Example
Evaluate each limit.

(@) lim cos(x +sinx) = C.,s(“+ Qe ) * Cos(w+0) = CosT = -\
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Question

Evaluate the limit lim In(cos? x).
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Squeeze Theorem:

Theorem: Suppose f(x) < g(x) < h(x) for all x in an interval
containing ¢ except possibly at c. If
Jm #06) = Jim o) = L

then
lim g(x) = L.
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Squeeze Theorem:
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Figure: Graphical Representation of the Squeeze Theorem.



Example: Evaluate
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A Couple of Important Limits

Theorem: |im ﬂ —1 and lim % -0
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Important Observation

The character used in the limit statement is immaterial. That is,

im sing  im sint — iim sin(30)
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The key is that the argument of the sine matches the denominator with
these tending to zero.

This is a limit. It should not be confused with the statement
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which is NEVER true.



Examples
Evaluate each limit if possible.
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