
August 31 Math 2306 sec 54 Fall 2015

Section 2.3: First Order Linear Equations

We were trying to solve the first order linear equation in standard form

dy
dx

+ P(x)y = f (x).

Recall that the solution will look like y = yc + yp where the
complementary solution yc solves the associated homogeneous
equation

dy
dx

+ P(x)y = 0,

and the particular solution yp depends on f (x).
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dy
dx + P(x)y = f (x)

We sought a function, called an integrating factor, µ(x) such that when
we multiply our equation through by µ, the left hand side would become

d
dx

[µ(x)y(x)] .

We solved this intermediate problem and came up with

µ(x) = exp
(∫

P(x) dx
)
.
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General Solution of First Order Linear ODE

I Put the equation in standard form y ′ + P(x)y = f (x), and correctly
identify the function P(x).

I Obtain the integrating factor µ(x) = exp
(∫

P(x) dx
)
.

I Multiply both sides of the equation (in standard form) by the
integrating factor µ. The left hand side will always collapse into
the derivative of a product

d
dx

[µ(x)y ] = µ(x)f (x).

I Integrate both sides, and solve for y .

y(x) =
1

µ(x)

∫
µ(x)f (x) dx = e−

∫
P(x) dx

(∫
e
∫

P(x) dx f (x) dx + C
)
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Solve the ODE

x2 dy
dx

+2xy = ex
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Solve the ODE

dy
dx

+y = 3xe−x
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Solve the IVP

x
dy
dx
−y = 2x2, y(1) = 5
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Solve the IVP

dy
dt

+
4
t

y =
et

t3 , y(−1) = 0
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Steady and Transient States

For some linear equations, the term yc decays as x (or t) grows. For
example

dy
dx

+ y = 3xe−x has solution y =
3
2

x2 + Ce−x .

Here, yp =
3
2

x2 and yc = Ce−x .

Such a decaying complementary solution is called a transient state.

The corresponding particular solution is called a steady state.
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Section 3.1 (1.3, and a peek at 3.2) Applications

Figure: Mathematical Models give Rise to Differential Equations
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Population Dynamics

A population of dwarf rabbits grows at a rate proportional to the current
population. In 2011, there were 58 rabbits. In 2012, the population was
up to 89 rabbits. Estimate the number of rabbits expected in the
population in 2021.
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