August 31 Math 3260 sec. 57 Fall 2017

Section 1.9: The Matrix for a Linear Transformation

Definition: A transformation \mathcal{T} (a.k.a. **function** or **mapping**) from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $\mathcal{T}(\mathbf{x})$ in \mathbb{R}^m .

Definition: A transformation *T* is **linear** provided

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and
- (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every scalar c and vector \mathbf{u} in the domain of T.

A Theorem About Linear Transformations:

If T is a linear transformation, then

$$T(\mathbf{0}) = \mathbf{0},$$

$$T(c\mathbf{u}+d\mathbf{v})=cT(\mathbf{u})+dT(\mathbf{v})$$

for scalars c, d and vectors \mathbf{u} . \mathbf{v} .

And in fact

$$T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k) = c_1T(\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \cdots + c_kT(\mathbf{u}_k).$$

Theorem

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the j^{th} column of the matrix A is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the j^{th} column of the $n \times n$ identity matrix I_n . That is,

$$A = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)].$$

The matrix A is called the **standard matrix** for the linear transformation T.

One to One, Onto

Definition: A mapping $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n —i.e. if the range of T is all of the codomain.

omain.
T is onto if
$$T(\vec{x}) = \vec{b}$$
 is solvable for every \vec{b} in \mathbb{R}^n
i.e. $A\vec{x} = \vec{b}$ is always consistent. when
 $T(\vec{x}) = A\vec{x}$

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **one to one** if each **b** in \mathbb{R}^m is the image of **at most one x** in \mathbb{R}^n .

T is one to one if
$$T(\vec{x}) = T(\vec{y})$$

implies $\vec{x} = \vec{y}$

Determine if the transformation is one to one, onto, neither or both.

$$T(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \mathbf{x}. = A \dot{\mathbf{x}}$$
Is T one to one? Could $T(\dot{\mathbf{x}}) = T(\dot{\mathbf{y}})$ for some $\ddot{\mathbf{x}}, \ddot{\mathbf{y}}$ in \mathbb{R}^3 .
$$T(\dot{\dot{\mathbf{x}}}) = T(\dot{\dot{\mathbf{y}}}) \Rightarrow T(\dot{\dot{\mathbf{x}}}) - T(\dot{\dot{\mathbf{y}}}) = \ddot{\mathbf{0}}$$

$$\Rightarrow T(\dot{\dot{\mathbf{x}}} - \ddot{\mathbf{y}}) = \ddot{\mathbf{0}}$$
we can see if $\ddot{\mathbf{x}} - \ddot{\mathbf{y}}$ has to be $\ddot{\mathbf{0}}$ or not.
We have the homogeneous equation
$$A \ddot{\mathbf{x}} = \ddot{\mathbf{0}}$$

Take the augmented matrix

Solutions & would satisfy

$$\begin{array}{ccc}
x_1 + 2x_2 = 0 & \Rightarrow & x_2 = -2x_2 \\
x_1 + 2x_2 = 0 & \Rightarrow & x_3 = -2x_2
\end{array}$$

$$\begin{array}{ccc}
x_3 - \text{free} \\
\end{array}$$

Letting xo=-1, we get one non-trivial

Solution
$$\vec{\chi} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
.

$$T(\vec{x}) = \vec{0} = T(\vec{0})$$
 When $\vec{x} \neq \vec{0}$

T is not one to one.

Is Tonto? Is T(x)= 5 solvable for all bin IR2.

Is $A \vec{x} = \vec{b}$ always consistent? Let $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ be any vector in \mathbb{R}^2 .

We have augmented matrix

 $\begin{bmatrix} 0 & 1 & 3 & p^{5} \\ 1 & 0 & 5 & p^{1} \end{bmatrix}$

This implies that $x_1 + 2x_3 = b_1$ $x_2 + 3x_3 = b_2$

we have a solution For ony bi, bz $\vec{\lambda} = \begin{bmatrix} p' - 5 \times 3 \\ p^2 - 3 \times 3 \\ 0 \end{bmatrix} = \begin{bmatrix} p' \\ p' \\ 0 \end{bmatrix} + \chi^2 \begin{bmatrix} -5 \\ -3 \\ 1 \end{bmatrix}$ note: this looks like P+VL We find that T(x)=b is solvable for any Lin R2. Hence Tis onto.

Some Theorems

Theorem : Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Then T is one to one if and only if the homogeneous equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

This follows from
$$T(\vec{x}) = T(\vec{y}) \quad \text{corresponding to the}$$
homogeneous equation
$$T(\vec{x}) - T(\vec{y}) = T(\vec{x} - \vec{y}) = \vec{0}$$

Some Theorems

Theorem : Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then

- (i) T is onto if and only if the columns of A span \mathbb{R}^m , and
- (ii) T is one to one if and only if the columns of A are linearly independent.

(ii) Follows from
$$A\vec{x} = x_1\vec{q}_1 + x_2\vec{q}_2 + ... + x_n\vec{q}_n$$

So $A\vec{x} = \vec{0}$ has only the trivial solution
if $\vec{q}_1, \vec{q}_2, ..., \vec{q}_n$ are linearly independent

(1) Follows from the definition of sporta, , , , and

Example

Let $T(x_1, x_2) = (x_1, 2x_1 - x_2, 3x_2)$. Verify that T is one to one. Is T onto?

Suppose
$$T(x_1,x_2)=(0,0,0)$$

 $(x_1,2x_1-x_2)3x_2)=(0,0,0)$
 $\Rightarrow x_1=0, 2x_1-x_2=0 \text{ and } 3x_2=0$
 $x_1=0, x_2=0$
This requires $x=\begin{bmatrix}x_1\\x_2\end{bmatrix}=0$ in $x_2=0$
The homogeneous equation has only the trivial

To determine if it's onto, lets construct the standard motion A.

$$T(\vec{e}_i) = T(1,0) = (1,2\cdot1-0,3\cdot0) = (1,2,0)$$

 $T(\vec{e}_i) = T(0,1) = (0,2\cdot0-1,3\cdot1) = (0,-1,3)$

$$\begin{bmatrix} 1 & 0 & b_1 \\ 2 & -1 & b_1 \\ 0 & 3 & b_3 \end{bmatrix} - 2R_1 + R_2 + R_2 \begin{bmatrix} 1 & 0 & b_1 \\ 0 & -1 & -2b_1 + b_2 \\ 0 & 3 & b_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & b_1 \\ 0 & -1 & -2b_1 + b_2 \\ 0 & 0 & -6b_1 + 3b_2 + b_3 \end{bmatrix}$$

This is only consistent if -66, +3b2 +b3 = 0

Not all vectors in TR3 satisfy this. Tis not Onto.

The roose of T is the subset of \mathbb{R}^3 such that $b = \begin{bmatrix} \frac{1}{2}b_2 + \frac{1}{6}b_3 \\ b_2 \\ b_3 \end{bmatrix} = b_2 \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix} + b_3 \begin{bmatrix} \frac{1}{6} \\ 0 \\ 1 \end{bmatrix}$

$$b = \begin{bmatrix} \frac{1}{2}b_2 + \frac{1}{6}b_3 \\ b_3 \end{bmatrix} = b_2 \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix} + b_3 \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This is the spon of the columns of A.

Section 2.1: Matrix Operations

Recall the convenient notation for a matrix A

$$A = [\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Here each column is a vector \mathbf{a}_i in \mathbb{R}^m . We'll use the additional convenient notation to refer to A by entries Joseph Hit

$$A = [a_{ij}].$$

 a_{ii} is the entry in **row** *i* and **column** *j*.

Main Diagonal: The main diagonal consist of the entries a_{ii} . A **diagonal matrix** is a square matrix m = n for which all entries **not** on the main diagonal are zero.

Scalar Multiplication, Matrix Addition, & Equality

Scalar Multiplication: For $m \times n$ matrix $A = [a_{ij}]$ and scalar c

$$cA = [ca_{ij}].$$

Matrix Addition: For $m \times n$ matrices $A = [a_{ij}]$ and $B = [b_{ij}]$

$$A+B=[a_{ij}+b_{ij}].$$

The sum of two matrices is only defined if they are of the same size.

Matrix Equality: Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal (i.e. A = B) provided

$$a_{ij} = b_{ij}$$
 for every $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

Example

$$A = \left[\begin{array}{cc} 1 & -3 \\ -2 & 2 \end{array} \right], \quad B = \left[\begin{array}{cc} -2 & 4 \\ 7 & 0 \end{array} \right], \quad \text{and} \quad C = \left[\begin{array}{cc} 2 & 0 & 2 \\ 1 & -4 & 6 \end{array} \right]$$

Evaluate each expression or state why it fails to exist.

(a) 3B
$$3\beta = 3 \begin{bmatrix} -2 & 4 \\ 7 & 6 \end{bmatrix} = \begin{bmatrix} -6 & 12 \\ 21 & 0 \end{bmatrix}$$

$$A = \left[\begin{array}{cc} 1 & -3 \\ -2 & 2 \end{array} \right], \quad B = \left[\begin{array}{cc} -2 & 4 \\ 7 & 0 \end{array} \right], \quad \text{and} \quad C = \left[\begin{array}{cc} 2 & 0 & 2 \\ 1 & -4 & 6 \end{array} \right]$$

(b)
$$A + B$$

$$A+B = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 4 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 5 & 2 \end{bmatrix}$$