Calculus Basics

Assume that f and g are integrable functions and that k is a nonzero constant.

$$
\begin{aligned}
& \int 1 d x=x+C \\
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad n \neq-1 \\
& \int \sin (k x) d x=-\frac{1}{k} \cos (k x)+C \\
& \int \cos (k x) d x=\frac{1}{k} \sin (k x)+C \\
& \int \sec ^{2}(k x) d x=\frac{1}{k} \tan (k x)+C \\
& \int \csc ^{2}(k x) d x=-\frac{1}{k} \cot (k x)+C \\
& \int \sec (k x) \tan (k x) d x=\frac{1}{k} \sec (k x)+C \\
& \int \csc (k x) \cot (k x) d x=-\frac{1}{k} \csc (k x)+C \\
& \int \tan x d x=\ln |\sec x|+C \\
& \int \cot x d x=\ln |\sin x|+C \\
& \int \sec x d x=\ln |\sec x+\tan x|+C \\
& \int \csc x d x=-\ln |\csc x+\cot x|+C \\
& \int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x \\
& \int k f(x) d x=k \int f(x) d x \\
& \int \frac{1}{u} d u=\ln |u|+C \\
& \int e^{u} d u=e^{u}+C
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1} x & =\frac{1}{\sqrt{1-x^{2}}}=-\frac{d}{d x} \cos ^{-1} x \\
\frac{d}{d x} \sec ^{-1} x & =\frac{1}{|x| \sqrt{x^{2}-1}}=-\frac{d}{d x} \csc ^{-1} x \\
\frac{d}{d x} \tan ^{-1} x & =\frac{1}{1+x^{2}}=-\frac{d}{d x} \cot ^{-1} x \\
\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u & =\sin ^{-1}\left(\frac{u}{a}\right)+C \quad a^{2}-u^{2}>0 \\
\int \frac{1}{a^{2}+u^{2}} d u & =\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C \\
\int \frac{1}{u \sqrt{u^{2}-a^{2}}} d u & =\frac{1}{a} \sec ^{-1}\left|\frac{u}{a}\right|+C \quad u^{2}-a^{2}>0 \\
\int u d v & =u v-\int v d u \\
\sin m x \sin n x & =\frac{1}{2}(\cos (m-n) x-\cos (m+n) x) \\
\cos m x \cos n x & =\frac{1}{2}(\cos (m-n) x+\cos (m+n) x) \\
\sin m x \cos n x & =\frac{1}{2}(\sin (m-n) x+\sin (m+n) x)
\end{aligned}
$$

Some Sequence and Series Stuff

The sequence $\left\{a_{n}\right\}$ is said to converge to a if $\lim _{n \rightarrow \infty} a_{n}=a$. If the limit is infinite or otherwise does not exist, the sequence is divergent.

The infinte series $\sum a_{n}$ is convergent with sum s if the sequence of partial sums

$$
s_{n}=\sum_{k=1}^{n} a_{n}
$$

converges to s. If the limit of the partial sums doesn't exist, the series $\sum a_{n}$ is divergent.

Some special series:

(1) (p-series) $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges if $p \leq 1$ and converges if $p>1$
(2) (geometric) $\sum_{n=0}^{\infty} a r^{n}$ diverges if $|r| \geq 1$. If $|r|<1$ it converges with sum

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

(3) (telescoping) $\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right)$ diverges if $\lim _{n \rightarrow \infty} a_{n}$ doesn't exist. If this limit exists, the sum converges to $a_{1}-\lim _{n \rightarrow \infty} a_{n}$.
$\mathbf{n}^{\text {th }}$ term test (a.k.a. Divergence test): If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series $\sum a_{n}$ is divergent.

Integral test: If f is a positive, decreasing, integrable function for $x \geq N$, and if $f(n)=a_{n}$ for integers $n \geq N$ then the integral and the series

$$
\int_{N}^{\infty} f(x) d x \quad \text { and } \quad \sum_{n=N}^{\infty} a_{n}
$$

both converge or both diverge.

Direct comparison test: We consider two series of nonegative terms $\sum a_{n}$ and $\sum b_{n}$. Suppose

$$
0 \leq a_{n} \leq b_{n} \quad \text { for all } n \geq N
$$

Then
(1) If $\sum b_{n}$ converges, then $\sum a_{n}$ converges, and
(2) if $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges.

Limit comparison test Let $\sum a_{n}$ and $\sum b_{n}$ be series of positive terms. If
(1) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$ where $0<L<\infty$, then both series converge or both diverge;
(2) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, and $\sum b_{n}$ converges, then $\sum a_{n}$ converges; and
(3) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$, and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

Ratio test: Consider the series (of nonzero terms) $\sum a_{n}$ Let

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| .
$$

(1) If $L<1$, the series converges,
(2) if $L>1$, the series diverges, and
(3) if $L=1$, the test gives no information.

Root test: Consider the series $\sum a_{n}$ Let

$$
L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} .
$$

(1) If $L<1$, the series converges,
(2) if $L>1$, the series diverges, and
(3) if $L=1$, the test gives no information.

Alternating series test: Consider the series $\sum(-1)^{n} u_{n}$ or $\sum(-1)^{n+1} u_{n}$, where the terms u_{n} are all nonnegative. If
(1) $u_{n} \geq u_{n+1}$ for all $n \geq n_{0}$ for some index n_{0}, and
(2) $\lim _{n \rightarrow \infty} u_{n}=0$
then the series converges.

If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ is said to converge absolutely. If $\sum a_{n}$ converges, but $\sum\left|a_{n}\right|$ diverges, then $\sum a_{n}$ is said to converge conditionally.

If f is a function that is defined on an interval I with derivatives of all orders on I, and if a is an interior point of I, then the Taylor series generated by f centered at $x=a$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

If $a=0$, we call the series a Maclaurin series.

A Taylor series is a special example of a power series. A power series is one of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n} .
$$

If this series converges whenever $|x-a|<R$ (where R is the largest such value or infinite if the series converges for all $-\infty<x<\infty$), then we say that the radius of convergence is R. The interval of convergence (for finite R) is one of $a-R<x<a+R, a-R \leq x<a+R$, $a-R<x \leq a+R$, or $a-R \leq x \leq a+R$.

Binomial series For $-1<x<1$

$$
(1+x)^{m}=1+m x+\frac{m(m-1)}{2!} x^{2}+\ldots=\sum_{n=0}^{\infty}\binom{m}{n} x^{n} .
$$

Here,

$$
\binom{m}{n}=\frac{m(m-1)(m-2) \cdots(m-n+1)}{n!} .
$$

Polar Graph Integration The area of the region between the origin and the function $r=f(\theta)$ for θ between α and β is

$$
\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2}(f(\theta))^{2} d \theta
$$

