Calculus Basics

Assume that f and g are integrable functions and that k is a nonzero constant.

$$\int 1 \, dx = x + C$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad n \neq -1$$

$$\int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C$$

$$\int \cos(kx) \, dx = \frac{1}{k} \sin(kx) + C$$

$$\int \sec^2(kx) \, dx = \frac{1}{k} \tan(kx) + C$$

$$\int \sec^2(kx) \, dx = -\frac{1}{k} \cot(kx) + C$$

$$\int \sec(kx) \tan(kx) \, dx = \frac{1}{k} \sec(kx) + C$$

$$\int \sec(kx) \cot(kx) \, dx = -\frac{1}{k} \csc(kx) + C$$

$$\int \tan x \, dx = \ln |\sec x| + C$$

$$\int \tan x \, dx = \ln |\sec x| + C$$

$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$

$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$

$$\int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

$$\int kf(x) \, dx = k \int f(x) \, dx$$

$$\int \frac{1}{u} \, du = \ln |u| + C$$

$$\int e^u \, du = e^u + C$$

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}} = -\frac{d}{dx}\cos^{-1}x$$
$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2-1}} = -\frac{d}{dx}\csc^{-1}x$$
$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2} = -\frac{d}{dx}\cot^{-1}x$$
$$\int \frac{1}{\sqrt{a^2-u^2}}du = \sin^{-1}\left(\frac{u}{a}\right) + C \quad a^2 - u^2 > 0$$
$$\int \frac{1}{a^2+u^2}du = \frac{1}{a}\tan^{-1}\left(\frac{u}{a}\right) + C$$
$$\int \frac{1}{u\sqrt{u^2-a^2}}du = \frac{1}{a}\sec^{-1}\left|\frac{u}{a}\right| + C \quad u^2 - a^2 > 0$$
$$\int u\,dv = uv - \int v\,du$$
$$\sin mx \sin nx = \frac{1}{2}(\cos(m-n)x - \cos(m+n)x)$$
$$\cos mx \cos nx = \frac{1}{2}(\cos(m-n)x + \cos(m+n)x)$$
$$\sin mx \cos nx = \frac{1}{2}(\sin(m-n)x + \sin(m+n)x)$$

Some Sequence and Series Stuff

The sequence $\{a_n\}$ is said to converge to a if $\lim_{n\to\infty} a_n = a$. If the limit is infinite or otherwise does not exist, the sequence is divergent.

The infinte series $\sum a_n$ is convergent with sum s if the sequence of partial sums

$$s_n = \sum_{k=1}^n a_n$$

converges to s. If the limit of the partial sums doesn't exist, the series $\sum a_n$ is divergent.

Some special series:

- (1) (p-series) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges if $p \le 1$ and converges if p > 1
- (2) (geometric) $\sum_{n=0}^{\infty} ar^n$ diverges if $|r| \ge 1$. If |r| < 1 it converges with sum

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}.$$

(3) (telescoping) ∑_{n=1}[∞] (a_n − a_{n+1}) diverges if lim_{n→∞} a_n doesn't exist. If this limit exists, the sum converges to a₁ − lim_{n→∞} a_n.

nth term test (a.k.a. Divergence test): If $\lim_{n\to\infty} a_n \neq 0$, the series $\sum a_n$ is divergent.

Integral test: If f is a positive, decreasing, integrable function for $x \ge N$, and if $f(n) = a_n$ for integers $n \ge N$ then the integral and the series

$$\int_{N}^{\infty} f(x) dx$$
 and $\sum_{n=N}^{\infty} a_n$

both converge or both diverge.

Direct comparison test: We consider two series of nonegative terms $\sum a_n$ and $\sum b_n$. Suppose

$$0 \le a_n \le b_n$$
 for all $n \ge N$.

Then

(1) If
$$\sum b_n$$
 converges, then $\sum a_n$ converges, and

(2) if $\sum a_n$ diverges, then $\sum b_n$ diverges.

Limit comparison test Let $\sum a_n$ and $\sum b_n$ be series of positive terms. If

- (1) $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ where $0 < L < \infty$, then both series converge or both diverge;
- (2) $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$, and $\sum b_n$ converges, then $\sum a_n$ converges; and
- (3) $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$, and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Ratio test: Consider the series (of nonzero terms) $\sum a_n$ Let

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

(1) If L < 1, the series converges,

- (2) if L > 1, the series diverges, and
- (3) if L = 1, the test gives no information.

Root test: Consider the series $\sum a_n$ Let

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|}.$$

- (1) If L < 1, the series converges,
- (2) if L > 1, the series diverges, and
- (3) if L = 1, the test gives no information.

Alternating series test: Consider the series $\sum (-1)^n u_n$ or $\sum (-1)^{n+1} u_n$, where the terms u_n are all nonnegative. If

- (1) $u_n \ge u_{n+1}$ for all $n \ge n_0$ for some index n_0 , and
- (2) $\lim_{n\to\infty} u_n = 0$

then the series converges.

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ is said to *converge absolutely*. If $\sum a_n$ converges, but $\sum |a_n|$ diverges, then $\sum a_n$ is said to *converge conditionally*.

If f is a function that is defined on an interval I with derivatives of all orders on I, and if a is an interior point of I, then the Taylor series generated by f centered at x = a is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

If a = 0, we call the series a Maclaurin series.

A Taylor series is a special example of a power series. A power series is one of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n.$$

If this series converges whenever |x - a| < R (where R is the largest such value or infinite if the series converges for all $-\infty < x < \infty$), then we say that the *radius of convergence* is R. The interval of convergence (for finite R) is one of a - R < x < a + R, $a - R \le x < a + R$, $a - R < x \le a + R$, or $a - R \le x \le a + R$.

Binomial series For -1 < x < 1

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \ldots = \sum_{n=0}^{\infty} {m \choose n}x^n.$$

Here,

$$\binom{m}{n} = \frac{m(m-1)(m-2)\cdots(m-n+1)}{n!}.$$

Polar Graph Integration The area of the region between the origin and the function $r = f(\theta)$ for θ between α and β is

$$\int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta = \int_{\alpha}^{\beta} \frac{1}{2} \left(f(\theta) \right)^2 d\theta.$$