Calculus Basics

Assume that f and g are integrable functions and that k is a nonzero constant.

\[
\begin{align*}
\int 1 \, dx & = x + C \\
\int x^n \, dx & = \frac{x^{n+1}}{n+1} + C \quad n \neq -1 \\
\int \sin(kx) \, dx & = -\frac{1}{k} \cos(kx) + C \\
\int \cos(kx) \, dx & = \frac{1}{k} \sin(kx) + C \\
\int \sec^2(kx) \, dx & = \frac{1}{k} \tan(kx) + C \\
\int \csc^2(kx) \, dx & = -\frac{1}{k} \cot(kx) + C \\
\int \sec(kx) \tan(kx) \, dx & = \frac{1}{k} \sec(kx) + C \\
\int \csc(kx) \cot(kx) \, dx & = -\frac{1}{k} \csc(kx) + C \\
\int \tan x \, dx & = \ln |\sec x| + C \\
\int \cot x \, dx & = \ln |\sin x| + C \\
\int \sec x \, dx & = \ln |\sec x + \tan x| + C \\
\int \csc x \, dx & = -\ln |\csc x + \cot x| + C \\
\int (f(x) \pm g(x)) \, dx & = \int f(x) \, dx \pm \int g(x) \, dx \\
\int kf(x) \, dx & = k \int f(x) \, dx \\
\int \frac{1}{u} \, du & = \ln |u| + C \\
\int e^u \, du & = e^u + C
\end{align*}
\]
\[\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}} = -\frac{d}{dx} \cos^{-1} x \]
\[\frac{d}{dx} \sec^{-1} x = \frac{1}{|x| \sqrt{x^2 - 1}} = -\frac{d}{dx} \csc^{-1} x \]
\[\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2} = -\frac{d}{dx} \cot^{-1} x \]
\[\int \frac{1}{\sqrt{a^2 - u^2}} \, du = \sin^{-1} \left(\frac{u}{a} \right) + C \quad a^2 - u^2 > 0 \]
\[\int \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C \]
\[\int \frac{1}{u \sqrt{u^2 - a^2}} \, du = \frac{1}{a} \sec^{-1} \left(\frac{|u|}{a} \right) + C \quad u^2 - a^2 > 0 \]
\[\int u \, dv = uv - \int v \, du \]
\[\sin mx \sin nx = \frac{1}{2} (\cos(mx - nx) - \cos(mx + nx)) \]
\[\cos mx \cos nx = \frac{1}{2} (\cos(mx - nx) + \cos(mx + nx)) \]
\[\sin mx \cos nx = \frac{1}{2} (\sin(mx - nx) + \sin(mx + nx)) \]

Some Sequence and Series Stuff

The sequence \(\{a_n\} \) is said to converge to \(a \) if \(\lim_{n \to \infty} a_n = a \). If the limit is infinite or otherwise does not exist, the sequence is divergent.

The infinite series \(\sum a_n \) is convergent with sum \(s \) if the sequence of partial sums
\[s_n = \sum_{k=1}^{n} a_n \]
converges to \(s \). If the limit of the partial sums doesn’t exist, the series \(\sum a_n \) is divergent.

Some special series:

1. (p-series) \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) diverges if \(p \leq 1 \) and converges if \(p > 1 \)

2. (geometric) \(\sum_{n=0}^{\infty} ar^n \) diverges if \(|r| \geq 1 \). If \(|r| < 1 \) it converges with sum
\[\sum_{n=0}^{\infty} ar^n = \frac{a}{1 - r} \]
(3) (telescoping) \(\sum_{n=1}^{\infty} (a_n - a_{n+1}) \) diverges if \(\lim_{n \to \infty} a_n \) doesn’t exist. If this limit exists, the sum converges to \(a_1 - \lim_{n \to \infty} a_n \).

\textbf{nth term test (a.k.a. Divergence test):} If \(\lim_{n \to \infty} a_n \neq 0 \), the series \(\sum a_n \) is divergent.

\textbf{Integral test:} If \(f \) is a positive, decreasing, integrable function for \(x \geq N \), and if \(f(n) = a_n \) for integers \(n \geq N \) then the integral and the series

\[
\int_{N}^{\infty} f(x) \, dx \quad \text{and} \quad \sum_{n=N}^{\infty} a_n
\]

both converge or both diverge.

\textbf{Direct comparison test:} We consider two series of nonegative terms \(\sum a_n \) and \(\sum b_n \). Suppose

\[
0 \leq a_n \leq b_n \quad \text{for all } n \geq N.
\]

Then

(1) If \(\sum b_n \) converges, then \(\sum a_n \) converges, and

(2) if \(\sum a_n \) diverges, then \(\sum b_n \) diverges.

\textbf{Limit comparison test} Let \(\sum a_n \) and \(\sum b_n \) be series of positive terms. If

(1) \(\lim_{n \to \infty} \frac{a_n}{b_n} = L \) where \(0 < L < \infty \), then both series converge or both diverge;

(2) \(\lim_{n \to \infty} \frac{a_n}{b_n} = 0 \), and \(\sum b_n \) converges, then \(\sum a_n \) converges; and

(3) \(\lim_{n \to \infty} \frac{a_n}{b_n} = \infty \), and \(\sum b_n \) diverges, then \(\sum a_n \) diverges.
Ratio test: Consider the series (of nonzero terms) \(\sum a_n \). Let

\[
L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|
\]

(1) If \(L < 1 \), the series converges,

(2) if \(L > 1 \), the series diverges, and

(3) if \(L = 1 \), the test gives no information.

Root test: Consider the series \(\sum a_n \). Let

\[
L = \lim_{n \to \infty} \sqrt[n]{|a_n|}
\]

(1) If \(L < 1 \), the series converges,

(2) if \(L > 1 \), the series diverges, and

(3) if \(L = 1 \), the test gives no information.

Alternating series test: Consider the series \(\sum (-1)^n u_n \) or \(\sum (-1)^{n+1} u_n \), where the terms \(u_n \) are all nonnegative. If

(1) \(u_n \geq u_{n+1} \) for all \(n \geq n_0 \) for some index \(n_0 \), and

(2) \(\lim_{n \to \infty} u_n = 0 \)

then the series converges.

If the series \(\sum |a_n| \) converges, then the series \(\sum a_n \) is said to converge **absolutely**. If \(\sum a_n \) converges, but \(\sum |a_n| \) diverges, then \(\sum a_n \) is said to converge **conditionally**.
If \(f \) is a function that is defined on an interval \(I \) with derivatives of all orders on \(I \), and if \(a \) is an interior point of \(I \), then the Taylor series generated by \(f \) centered at \(x = a \) is

\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.
\]

If \(a = 0 \), we call the series a Maclaurin series.

A Taylor series is a special example of a power series. A power series is one of the form

\[
\sum_{n=0}^{\infty} c_n (x-a)^n.
\]

If this series converges whenever \(|x-a| < R\) (where \(R \) is the largest such value or infinite if the series converges for all \(-\infty < x < \infty\)), then we say that the **radius of convergence** is \(R \).

The interval of convergence (for finite \(R \)) is one of \(a-R < x < a+R \), \(a-R \leq x < a+R \), \(a-R < x \leq a+R \), or \(a-R \leq x \leq a+R \).

Binomial series For \(-1 < x < 1\)

\[
(1+x)^m = 1 + mx + \frac{m(m-1)}{2!} x^2 + \ldots = \sum_{n=0}^{\infty} \binom{m}{n} x^n.
\]

Here,

\[
\binom{m}{n} = \frac{m(m-1)(m-2)\cdots(m-n+1)}{n!}.
\]

Polar Graph Integration The area of the region between the origin and the function \(r = f(\theta) \) for \(\theta \) between \(\alpha \) and \(\beta \) is

\[
\int_{\alpha}^{\beta} \frac{1}{2} r^2 \, d\theta = \int_{\alpha}^{\beta} \frac{1}{2} (f(\theta))^2 \, d\theta.
\]