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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 8.31: A table of the derivaƟves of
f(x) = cos x evaluated at x = 0.

8.8 Taylor Series

8.8 Taylor Series
In SecƟon 8.6, we showed how certain funcƟons can be represented by a power
series funcƟon. In 8.7, we showed howwe can approximate funcƟons with poly-
nomials, given that enough derivaƟve informaƟon is available. In this secƟonwe
combine these concepts: if a funcƟon f(x) is infinitely differenƟable, we show
how to represent it with a power series funcƟon.

.

.

.
DefiniƟon 39 Taylor and Maclaurin Series

Let f(x) have derivaƟves of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)
n!

(x− c)n.

2. Seƫng c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)
n!

xn.

The difference between a Taylor polynomial and a Taylor series is the former
is a polynomial, containing only a finite number of terms, whereas the laƩer is
a series, a summaƟon of an infinite set of terms. When creaƟng the Taylor poly-
nomial of degree n for a funcƟon f(x) at x = c, we needed to evaluate f, and the
first n derivaƟves of f, at x = c. When creaƟng the Taylor series of f, it helps to
find a paƩern that describes the nth derivaƟve of f at x = c. We demonstrate
this in the next two examples.

.. Example 265 ..The Maclaurin series of f(x) = cos x
Find the Maclaurin series of f(x) = cos x.

SÊ½çã®ÊÄ In Example 262 we found the 8th degree Maclaurin polyno-
mial of cos x. In doing so, we created the table shown in Figure 8.31. NoƟce how
f (n)(0) = 0when n is odd, f (n)(0) = 1when n is divisible by 4, and f (n)(0) = −1
when n is even but not divisible by 4. Thus the Maclaurin series of cos x is

1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

Notes:
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f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
f (5)(x) = 24/x5 ⇒ f (5)(1) = 24
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 8.32: DerivaƟves of ln x evaluated
at x = 1.

Chapter 8 Sequences and Series

We can go further and write this as a summaƟon. Since we only need the terms
where the power of x is even, we write the power series in terms of x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

...

.. Example 266 The Taylor series of f(x) = ln x at x = 1
Find the Taylor series of f(x) = ln x centered at x = 1.

SÊ½çã®ÊÄ Figure 8.32 shows the nth derivaƟve of ln x evaluated at x =
1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what disƟnguishes Taylor series from Taylor polynomials;
we are very interested in finding a paƩern for the nth term, not just finding a
finite set of coefficients for a polynomial. Since f(1) = ln 1 = 0, we skip the
first term and start the summaƟon with n = 1, giving the Taylor series for ln x,
centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1
n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

..

It is important to note that DefiniƟon 39 defines a Taylor series given a func-
Ɵon f(x); however, we cannot yet state that f(x) is equal to its Taylor series. We
will find that “most of the Ɵme” they are equal, but we need to consider the
condiƟons that allow us to conclude this.

Theorem 76 states that the error between a funcƟon f(x) and its nth–degree
Taylor polynomial pn(x) is Rn(x), where

∣∣Rn(x)∣∣ ≤ max
∣∣ f (n+1)(z)

∣∣
(n+ 1)!

∣∣(x− c)(n+1)∣∣.
If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we con-

clude that the funcƟon is equal to its Taylor series expansion.

Notes:
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8.8 Taylor Series

.

.

.
Theorem 77 FuncƟon and Taylor Series Equality

Let f(x) have derivaƟves of all orders at x = c, let Rn(x) be as stated in
Theorem 76, and let I be an interval on which the Taylor series of f(x)
converges. If lim

n→∞
Rn(x) = 0 for all x in I containing c, then

f(x) =
∞∑
n=0

f (n)(c)
n!

(x− c)n on I.

We demonstrate the use of this theorem in an example.

.. Example 267 Establishing equality of a funcƟon and its Taylor series
Show that f(x) = cos x is equal to its Maclaurin series, as found in Example 265,
for all x.

SÊ½çã®ÊÄ Given a value x, the magnitude of the error term Rn(x) is
bounded by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣x(n+1)∣∣.

Since all derivaƟves of cos x are± sin xor± cos x, whosemagnitudes are bounded
by 1, we can state ∣∣Rn(x)∣∣ ≤ 1

(n+ 1)!
∣∣x(n+1)∣∣.

For any x, lim
n→∞

xn+1

(n+ 1)!
= 0. Thus by the Squeeze Theorem, we conclude that

lim
n→∞

Rn(x) = 0 for all x, and hence

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
for all x...

It is natural to assume that a funcƟon is equal to its Taylor series on the
series’ interval of convergence, but this is not the case. In order to properly
establish equality, one must use Theorem 77. This is a bit disappoinƟng, as we
developed beauƟful techniques for determining the interval of convergence of
a power series, and proving that Rn(x) → 0 can be cumbersome as it deals with
high order derivaƟves of the funcƟon.

There is good news. A funcƟon f(x) that is equal to its Taylor series, centered
at any point the domain of f(x), is said to be an analyƟc funcƟon, and most, if
not all, funcƟons that we encounter within this course are analyƟc funcƟons.

Notes:
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Chapter 8 Sequences and Series

Generally speaking, any funcƟon that one creates with elementary funcƟons
(polynomials, exponenƟals, trigonometric funcƟons, etc.) that is not piecewise
defined is probably analyƟc. Formost funcƟons, we assume the funcƟon is equal
to its Taylor series on the series’ interval of convergence and only use Theorem
77 when we suspect something may not work as expected.

We develop the Taylor series for one more important funcƟon, then give a
table of the Taylor series for a number of common funcƟons.

.. Example 268 ..The Binomial Series
Find the Maclaurin series of f(x) = (1+ x)k, k ̸= 0.

SÊ½çã®ÊÄ When k is a posiƟve integer, the Maclaurin series is finite.
For instance, when k = 4, we have

f(x) = (1+ x)4 = 1+ 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a posiƟve integer are known as the binomial co-
efficients, giving the series we are developing its name.

When k = 1/2, we have f(x) =
√
1+ x. Knowing a series representaƟon of

this funcƟon would give a useful way of approximaƟng
√
1.3, for instance.

To develop the Maclaurin series for f(x) = (1 + x)k for any value of k ̸= 0,
we consider the derivaƟves of f evaluated at x = 0:

f(x) = (1+ x)k f(0) = 1

f ′(x) = k(1+ x)k−1 f ′(0) = k

f ′′(x) = k(k− 1)(1+ x)k−2 f ′′(0) = k(k− 1)

f ′′′(x) = k(k− 1)(k− 2)(1+ x)k−3 f ′′′(0) = k(k− 1)(k− 2)
...

...

f (n)(x) = k(k− 1) · · ·
(
k− (n− 1)

)
(1+ x)k−n f (n)(0) = k(k− 1) · · ·

(
k− (n− 1)

)
Thus the Maclaurin series for f(x) = (1+ x)k is

1+ k+
k(k− 1)

2!
+

k(k− 1)(k− 2)
3!

+ . . .+
k(k− 1) · · ·

(
k− (n− 1)

)
n!

+ . . .

It is important to determine the interval of convergence of this series. With

an =
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn,

Notes:

460



8.8 Taylor Series

we apply the RaƟo Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣k(k− 1) · · · (k− n)
(n+ 1)!

xn+1
∣∣∣∣
/∣∣∣∣∣k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn
∣∣∣∣∣

= lim
n→∞

∣∣∣∣k− n
n

x
∣∣∣∣

= |x|.

The series converges absolutely when the limit of the RaƟo Test is less than
1; therefore, we have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1]. When
−1 < k < 0, the interval of convergence is [−1, 1). If k ≤ −1, the interval of
convergence is (−1, 1). ...

We learned that Taylor polynomials offer a way of approximaƟng a “difficult
to compute” funcƟon with a polynomial. Taylor series offer a way of exactly
represenƟng a funcƟon with a series. One probably can see the use of a good
approximaƟon; is there any use of represenƟng a funcƟon exactly as a series?

Whilewe should not overlook themathemaƟcal beauty of Taylor series (which
is reason enough to study them), there are pracƟcal uses as well. They provide
a valuable tool for solving a variety of problems, including problems relaƟng to
integraƟon and differenƟal equaƟons.

In Key Idea 32 (on the following page) we give a table of the Taylor series
of a number of common funcƟons. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new funcƟons. This allows us to find the Taylor series of funcƟons like
f(x) = ex cos x by knowing the Taylor series of ex and cos x.

Before we invesƟgate combining funcƟons, consider the Taylor series for the
arctangent funcƟon (see Key Idea 32). Knowing that tan−1(1) = π/4, we can
use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

π = 4
(
1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

)
Unfortunately, this parƟcular expansion of π converges very slowly. The first

100 terms approximate π as 3.13159, which is not parƟcularly good.

Notes:
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Chapter 8 Sequences and Series

.

.

.
Key Idea 32 Important Taylor Series Expansions

FuncƟon and Series First Few Terms Interval of
Convergence

ex =
∞∑
n=0

xn

n!
1+ x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · (0, 2]

1
1− x

=
∞∑
n=0

xn 1+ x+ x2 + x3 + · · · (−1, 1)

(1+ x)k =
∞∑
n=0

k(k− 1) · · ·
(
k− (n− 1)

)
n!

xn 1+ kx+
k(k− 1)

2!
x2 + · · · (−1, 1)a

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]

aConvergence at x = ±1 depends on the value of k.

.

.

.
Theorem 78 Algebra of Power Series

Let f(x) =
∞∑
n=0

anxn and g(x) =
∞∑
n=0

bnxn converge absolutely for |x| < R, and let h(x) be conƟnuous.

1. f(x)± g(x) =
∞∑
n=0

(an ± bn)xn for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anxn
)( ∞∑

n=0

bnxn
)

=
∞∑
n=0

(
a0bn + a1bn−1 + . . . anb0

)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.

Notes:
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8.8 Taylor Series

.. Example 269 Combining Taylor series
Write out the first 3 terms of the Taylor Series for f(x) = ex cos x using Key Idea
32 and Theorem 78.

SÊ½çã®ÊÄ Key Idea 32 informs us that

ex = 1+ x+
x2

2!
+

x3

3!
+ · · · and cos x = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 78, we find that

ex cos x =
(
1+ x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the leŌ:

= 1
(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·

Distribute again and collect like terms.

= 1+ x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · ·

While this process is a bit tedious, it is much faster than evaluaƟng all the nec-
essary derivaƟves of ex cos x and compuƟng the Taylor series directly.

Because the series for ex and cos x both converge on (−∞,∞), so does the
series expansion for ex cos x. ..

.. Example 270 ..CreaƟng new Taylor series
Use Theorem 78 to create series for y = sin(x2) and y = ln(

√
x).

SÊ½çã®ÊÄ Given that

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply subsƟtute x2 for x in the series, giving

sin(x2) =
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!
= x2 − x6

3!
+

x10

5!
− x14

7!
· · · .

Notes:
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Chapter 8 Sequences and Series

Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(x2).

The Taylor expansion for ln x given in Key Idea 32 is centered at x = 1, so we
will center the series for ln(

√
x) at x = 1 as well. With

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · ,

we subsƟtute
√
x for x to obtain

ln(
√
x) =

∞∑
n=1

(−1)n+1 (
√
x− 1)n

n
= (

√
x−1)− (

√
x− 1)2

2
+

(
√
x− 1)3

3
−· · · .

While this is not strictly a power series, it is a series that allows us to study the
funcƟon ln(

√
x). Since the interval of convergence of ln x is (0, 2], and the range

of
√
x on (0, 4] is (0, 2], the interval of convergence of this series expansion of

ln(
√
x) is (0, 4]. ...

.. Example 271 ..Using Taylor series to evaluate definite integrals

Use the Taylor series of e−x2 to evaluate
∫ 1

0
e−x2 dx.

SÊ½çã®ÊÄ We learned, when studying Numerical IntegraƟon, that e−x2

does not have an anƟderivaƟve expressible in terms of elementary funcƟons.
This means any definite integral of this funcƟon must have its value approxi-
mated, and not computed exactly.

We can quickly write out the Taylor series for e−x2 using the Taylor series of
ex:

ex =
∞∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2 =
∞∑
n=0

(−x2)n

n!

=
∞∑
n=0

(−1)n
x2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · ·

Notes:
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8.8 Taylor Series

We use Theorem 75 to integrate:∫
e−x2 dx = C+ x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)n!
+ · · ·

This is the anƟderivaƟve of e−x2 ; while we can write it out as a series, we can-
not write it out in terms of elementary funcƟons. We can evaluate the definite

integral
∫ 1

0
e−x2 dx using this anƟderivaƟve; subsƟtuƟng 1 and 0 for x and sub-

tracƟng gives ∫ 1

0
e−x2 dx = 1− 1

3
+

1
5 · 2!

− 1
7 · 3!

+
1

9 · 4!
· · · .

Summing the 5 terms shown above give the approximaƟon of 0.74749. Since
this is an alternaƟng series, we can use the AlternaƟng Series ApproximaƟon
Theorem, (Theorem 71), to determine how accurate this approximaƟon is. The
next term of the series is 1/(11 · 5!) ≈ 0.00075758. Thus we know our approxi-
maƟon is within 0.00075758 of the actual value of the integral. This is arguably
much less work than using Simpson’s Rule to approximate the value of the inte-
gral. ...

.. Example 272 Using Taylor series to solve differenƟal equaƟons
Solve the differenƟal equaƟon y′ = 2y in terms of a power series, and use the
theory of Taylor series to recognize the soluƟon in terms of an elementary func-
Ɵon.

SÊ½çã®ÊÄ We found the first 5 terms of the power series soluƟon to
this differenƟal equaƟon in Example 258 in SecƟon 8.6. These are:

a0 = 1, a1 = 2, a2 =
4
2
= 2, a3 =

8
2 · 3

=
4
3
, a4 =

16
2 · 3 · 4

=
2
3
.

We include the “unsimplified” expressions for the coefficients found in Example
258 as we are looking for a paƩern. It can be shown that an = 2n/n!. Thus the
soluƟon, wriƩen as a power series, is

y =
∞∑
n=0

2n

n!
xn =

∞∑
n=0

(2x)n

n!
.

Using Key Idea 32 and Theorem 78, we recognize f(x) = e2x:

ex =
∞∑
n=0

xn

n!
⇒ e2x =

∞∑
n=0

(2x)n

n!
.

..

Notes:
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Chapter 8 Sequences and Series

Finding a paƩern in the coefficients that match the series expansion of a
known funcƟon, such as those shown in Key Idea 32, can be difficult. What if
the coefficients in the previous example were given in their reduced form; how
could we sƟll recover the funcƟon y = e2x?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4
3
, a4 =

2
3
.

DefiniƟon 39 states that each term of the Taylor expansion of a funcƟon includes
an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4
3
=

b3
3!
, and a4 =

2
3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the paƩern we had previously
seen, allowing us to write

f(x) =
∞∑
n=0

anxn =
∞∑
n=0

bn
n!

xn

= 1+ 2x+
4
2!
x2 +

8
3!
x3 +

16
4!

x4 + · · ·

From here it is easier to recognize that the series is describing an exponenƟal
funcƟon.

There are simpler, more direct ways of solving the differenƟal equaƟon y′ =
2y. We applied power series techniques to this equaƟon to demonstrate its uƟl-
ity, and went on to show how someƟmes we are able to recover the soluƟon in
terms of elementary funcƟons using the theory of Taylor series. Most differen-
Ɵal equaƟons faced in real scienƟfic and engineering situaƟons are much more
complicated than this one, but power series can offer a valuable tool in finding,
or at least approximaƟng, the soluƟon.

Notes:
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Exercises 8.8
Terms and Concepts
1. What is the difference between a Taylor polynomial and a

Taylor series?

2. What theoremmustwe use to show that a funcƟon is equal
to its Taylor series?

Problems
Key Idea 32 gives the nth term of the Taylor series of common
funcƟons. In Exercises 3 – 6, verify the formula given in the
Key Idea by finding the first few terms of the Taylor series of
the given funcƟon and idenƟfying a paƩern.

3. f(x) = ex; c = 0

4. f(x) = sin x; c = 0

5. f(x) = 1/(1− x); c = 0

6. f(x) = tan−1 x; c = 0

In Exercises 7 – 12, find a formula for the nth termof the Taylor
series of f(x), centered at c, by finding the coefficients of the
first few powers of x and looking for a paƩern. (The formu-
las for several of these are found in Key Idea 32; show work
verifying these formula.)

7. f(x) = cos x; c = π/2

8. f(x) = 1/x; c = 1

9. f(x) = e−x; c = 0

10. f(x) = ln(1+ x); c = 0

11. f(x) = x/(x+ 1); c = 1

12. f(x) = sin x; c = π/4

In Exercises 13 – 16, show that the Taylor series for f(x), as
given in Key Idea 32, is equal to f(x) by applying Theorem 77;
that is, show lim

n→∞
Rn(x) = 0.

13. f(x) = ex

14. f(x) = sin x

15. f(x) = ln x

16. f(x) = 1/(1− x) (show equality only on (−1, 0))

In Exercises 17 – 20, use the Taylor series given in Key Idea 32
to verify the given idenƟty.

17. cos(−x) = cos x

18. sin(−x) = − sin x

19. d
dx

(
sin x

)
= cos x

20. d
dx

(
cos x

)
= − sin x

In Exercises 21 – 24, write out the first 5 terms of the Binomial
series with the given k-value.

21. k = 1/2

22. k = −1/2

23. k = 1/3

24. k = 4

In Exercises 25 – 30, use the Taylor series given in Key Idea 32
to create the Taylor series of the given funcƟons.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1 (x/2)
29. f(x) = ex sin x (only find the first 4 terms)

30. f(x) = (1+ x)1/2 cos x (only find the first 4 terms)

In Exercises 31 – 32, approximate the value of the given def-
inite integral by using the first 4 nonzero terms of the inte-
grand’s Taylor series.

31.
∫ √

π

0
sin
(
x2
)
dx

32.
∫ π2/4

0
cos
(√

x
)
dx
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21. (a) R = 1

(b) [−1, 1]

23. (a) R = 0

(b) x = 0

25. (a) f ′(x) =
∞∑
n=1

n2xn−1; (−1, 1)

(b)
∫

f(x) dx = C+
∞∑
n=0

n
n+ 1

xn+1; (−1, 1)

27. (a) f ′(x) =
∞∑
n=1

n
2n

xn−1; (−2, 2)

(b)
∫

f(x) dx = C+

∞∑
n=0

1
(n+ 1)2n

xn+1; [−2, 2)

29. (a) f ′(x) =
∞∑
n=1

(−1)nx2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!
;

(−∞,∞)

(b)
∫

f(x) dx = C+

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
; (−∞,∞)

31. 1+ 3x+ 9
2 x

2 + 9
2 x

3 + 27
8 x4

33. 1+ x+ x2 + x3 + x4

35. 0+ x+ 0x2 − 1
6 x

3 + 0x4

SecƟon 8.7

1. The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

3. p2(x) = 6+ 3x− 4x2.

5. p3(x) = 1− x+ 1
2 x

3 − 1
6 x

3

7. p8(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1

11. p4(x) = x4 − x3 + x2 − x+ 1

13. p4(x) = 1+ 1
2 (−1+x)− 1

8 (−1+x)2+ 1
16 (−1+x)3− 5

128 (−1+x)4

15. p6(x) = 1√
2
− − π

4 +x
√

2
− (− π

4 +x)2

2
√

2
+

(− π
4 +x)3

6
√

2
+

(− π
4 +x)4

24
√

2
−

(− π
4 +x)5

120
√

2
− (− π

4 +x)6

720
√

2

17. p5(x) = 1
2−

x−2
4 + 1

8 (x−2)2− 1
16 (x−2)3+ 1

32 (x−2)4− 1
64 (x−2)5

19. p3(x) = 1
2 + 1+x

2 + 1
4 (1+ x)2

21. p3(x) = x− x3
6 ; p3(0.1) = 0.09983. Error is bounded by

± 1
4! · 0.1

4 ≈ ±0.000004167.

23. p2(x) = 3+ 1
6 (−9+ x)− 1

216 (−9+ x)2; p2(10) = 3.16204.
The third derivaƟve of f(x) =

√
x is bounded on (8, 11) by 0.003.

Error is bounded by± 0.003
3! · 13 = ±0.0005.

25. The nth derivaƟve of f(x) = ex is bounded by 3 on intervals
containing 0 and 1. Thus |Rn(1)| ≤ 3

(n+1)!1
(n+1). When n = 7,

this is less than 0.0001.

27. The nth derivaƟve of f(x) = cos x is bounded by 1 on intervals
containing 0 and π/3. Thus |Rn(π/3)| ≤ 1

(n+1)! (π/3)
(n+1).

When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
use n = 6.

29. The nth term is 1
n! x

n.

31. The nth term is xn.

33. The nth term is (−1)n (x−1)n

n .

35. 3+ 15x+
75
2
x2 +

375
6

x3 +
1875
24

x4

SecƟon 8.8

1. A Taylor polynomial is a polynomial, containing a finite number of
terms. A Taylor series is a series, the summaƟon of an infinite
number of terms.

3. All derivaƟves of ex are ex which evaluate to 1 at x = 0.

The Taylor series starts 1+ x+ 1
2 x

2 + 1
3! x

3 + 1
4! x

4 + · · · ;

the Taylor series is
∞∑
n=0

xn

n!

5. The nth derivaƟve of 1/(1− x) is f (n)(x) = (n)!/(1− x)n+1,
which evaluates to n! at x = 0.

The Taylor series starts 1+ x+ x2 + x3 + · · · ;

the Taylor series is
∞∑
n=0

xn

7. The Taylor series starts
0− (x− π/2) + 0x2 + 1

6 (x− π/2)3 + 0x4 − 1
120 (x− π/2)5;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− π/2)2n+1

(2n+ 1)!

9. f (n)(x) = (−1)ne−x; at x = 0, f (n)(0) = −1 when n is odd and
f (n)(0) = 1 when n is even.
The Taylor series starts 1− x+ 1

2 x
2 − 1

3! x
3 + · · · ;

the Taylor series is
∞∑
n=0

(−1)n
xn

n!
.

11. f (n)(x) = (−1)n+1 n!
(x+1)n+1 ; at x = 1, f (n)(1) = (−1)n+1 n!

2n+1

The Taylor series starts
1
2 + 1

4 (x− 1)− 1
8 (x− 1)2 + 1

16 (x− 1)3 · · · ;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− 1)n

2n+1 .

13. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣x(n+1)∣∣,
where z is between 0 and x.
If x > 0, then z < x and f (n+1)(z) = ez < ex. If x < 0, then
x < z < 0 and f (n+1)(z) = ez < 1. So given a fixed x value, let
M = max{ex, 1}; f (n)(z) < M. This allows us to state

∣∣Rn(x)∣∣ ≤ M
(n+ 1)!

∣∣x(n+1)∣∣.
For any x, lim

n→∞

M
(n+ 1)!

∣∣x(n+1)∣∣ = 0. Thus by the Squeeze

Theorem, we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

ex =
∞∑
n=0

xn

n!
for all x.

A.9
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15. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣(x− 1)(n+1)∣∣,
where z is between 1 and x.
Note that

∣∣f (n+1)(x)
∣∣ = n!

xn+1 .
We consider the cases when x > 1 and when x < 1 separately.
If x > 1, then 1 < z < x and f (n+1)(z) = n!

zn+1 < n!. Thus

∣∣Rn(x)∣∣ ≤ n!
(n+ 1)!

∣∣(x− 1)(n+1)∣∣ = (x− 1)n+1

n+ 1
.

For a fixed x,

lim
n→∞

(x− 1)n+1

n+ 1
= 0.

If 0 < x < 1, then x < z < 1 and f (n+1)(z) = n!
zn+1 < n!

xn+1 .
Thus∣∣Rn(x)∣∣ ≤ n!/xn+1

(n+ 1)!

∣∣(x− 1)(n+1)∣∣ = xn+1

n+ 1
(1− x)n+1.

Since 0 < x < 1, xn+1 < 1 and (1− x)n+1 < 1. We can then
extend the inequality from above to state

∣∣Rn(x)∣∣ ≤ xn+1

n+ 1
(1− x)n+1 <

1
n+ 1

.

As n → ∞, 1/(n+ 1) → 0. Thus by the Squeeze Theorem, we
conclude that lim

n→∞
Rn(x) = 0 for all x, and hence

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
for all 0 < x ≤ 2.

17. Given cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
,

cos(−x) =
∞∑
n=0

(−1)n
(−x)2n

(2n)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x, as all

powers in the series are even.

19. Given sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

d
dx
(
sin x

)
=

d
dx

( ∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

)
=

∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x. (The

summaƟon sƟll starts at n = 0 as there was no constant term in
the expansion of sin x).

21. 1+
x
2
−

x2

8
+

x3

16
−

5x4

128

23. 1+
x
3
−

x2

9
+

5x3

81
−

10x4

243

25.
∞∑
n=0

(−1)n
(x2)2n

(2n)!
=

∞∑
n=0

(−1)n
x4n

(2n)!
.

27.
∞∑
n=0

(−1)n
(2x+ 3)2n+1

(2n+ 1)!
.

29. x+ x2 +
x3

3
−

x5

30

31.
∫ √

π

0
sin
(
x2
)
dx ≈

∫ √
π

0

(
x2 −

x6

6
+

x10

120
−

x14

5040

)
dx =

0.8877
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