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8.8 Taylor Series

8.8 Taylor Series

In Section 8.6, we showed how certain functions can be represented by a power
series function. In 8.7, we showed how we can approximate functions with poly-
nomials, given that enough derivative information is available. In this section we
combine these concepts: if a function f(x) is infinitely differentiable, we show
how to represent it with a power series function.

Definition 39 Taylor and Maclaurin Series

Let f(x) have derivatives of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

> £(n)
Zf (C) (X— C)n.

n!
n=0

2. Setting ¢ = 0 gives the Maclaurin Series of f(x):

s f(n)(o)
Z% - X"

The difference between a Taylor polynomial and a Taylor series is the former
is a polynomial, containing only a finite number of terms, whereas the latter is
a series, a summation of an infinite set of terms. When creating the Taylor poly-
nomial of degree n for a function f(x) at x = ¢, we needed to evaluate f, and the
first n derivatives of f, at x = c. When creating the Taylor series of f, it helps to
find a pattern that describes the n" derivative of f at x = c. We demonstrate

this in the next two examples. f(x) = cosx = f(0)=1
f'(x) = —sinx = f'(0)=0

Example 265 The Maclaurin series of f(x) = cosx ;,,,((X)?)::;r:isx z ;//,((00))_:_01
Find the Maclaurin series of f(x) = cos x. F®(x) = cosx ~ F@0)=1
h ) fOx) =—sinx = fO0) =0

SOLUTION In Example 262 we found the 8™ degree Maclaurin polyno- FOX) = —cosx = fO0)=-1
mial of cos x. In doing so, we created the table shown in Figure 8.31. Notice how FO(x) = sinx = fD0)=0
£ (0) = Owhennisodd, f(" (0) = 1 when nis divisible by 4, and f (" (0) = —1 ® (x) = cosx = f®0)=1
when n is even but not divisible by 4. Thus the Maclaurin series of cos x is FO () = —sinx = f(9>(0) —0

2 Xt X X8 . _
11—+ 42 .. Figure 8.31: A table of the derivatives of

f(x) = cosx evaluated at x = 0.

Notes:
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Chapter 8 Sequences and Series

f(x) =Inx = f(1)=0
flx)=1/x = f'1)=1
' =-1/x = f'(1)=-1
f(x)=2/x = f"(1)=2
fO0)=-6/x" = fO1)=-6
fOX) =24/ = fO1)=2
FO ) = = ")
CUT0=0 Ly

Figure 8.32: Derivatives of In x evaluated
atx = 1.

458

We can go further and write this as a summation. Since we only need the terms
where the power of x is even, we write the power series in terms of x*”

Example 266 The Taylor series of f(x) = Inxatx =1
Find the Taylor series of f(x) = Inx centered at x = 1.

SOLUTION Figure 8.32 shows the n' derivative of In x evaluated at x =
1forn=0,...,5, along with an expression for the n term:

M) = (1) (n—1)! forn>1.

Remember that this is what distinguishes Taylor series from Taylor polynomials;
we are very interested in finding a pattern for the nt" term, not just finding a
finite set of coefficients for a polynomial. Since f(1) = In1 = 0, we skip the
first term and start the summation with n = 1, giving the Taylor series for In x,
centered atx = 1, as

o o

Z(—l)n+1(n — 1)!;:" (x—1)" = Z(—l)""‘lu.

! n
n=1 n=1

It is important to note that Definition 39 defines a Taylor series given a func-
tion f(x); however, we cannot yet state that f(x) is equal to its Taylor series. We
will find that “most of the time” they are equal, but we need to consider the
conditions that allow us to conclude this.

Theorem 76 states that the error between a function f(x) and its n"—degree
Taylor polynomial p,(x) is R,(x), where

max |nf+"J;1 | ’ c)(n+1)|_

[R ()] <

If R,(x) goes to O for each x in an interval I as n approaches infinity, we con-
clude that the function is equal to its Taylor series expansion.

Notes:



Theorem 77 Function and Taylor Series Equality

Let f(x) have derivatives of all orders at x = ¢, let R,(x) be as stated in
Theorem 76, and let / be an interval on which the Taylor series of f(x)
converges. If lim R,(x) = 0 for all x in / containing c, then

n—-o0

> £(n)
f)=>" %(X —¢)" onl

We demonstrate the use of this theorem in an example.

Example 267 Establishing equality of a function and its Taylor series
Show that f(x) = cos x is equal to its Maclaurin series, as found in Example 265,
for all x.

SOLUTION Given a value x, the magnitude of the error term R,(x) is
bounded by
max | £+ (z)
}R,,(X)‘ < #
(n+1)!

Since all derivatives of cos x are + sin x or & cos x, whose magnitudes are bounded
by 1, we can state

x|

|Rn ).

X)) < —
( )| ~ (n+1)!
+1
lim ———— = 0. Thus by the Squeeze Theorem, we conclude that
n—oo (n+ 1)!
lim R,(x) = 0for all x, and hence
n— oo

For any x,

& 2n

cosx=» (=1)" ()z(n)! for all x.

n=0

It is natural to assume that a function is equal to its Taylor series on the
series’ interval of convergence, but this is not the case. In order to properly
establish equality, one must use Theorem 77. This is a bit disappointing, as we
developed beautiful techniques for determining the interval of convergence of
a power series, and proving that R,(x) — 0 can be cumbersome as it deals with
high order derivatives of the function.

There is good news. A function f(x) that is equal to its Taylor series, centered
at any point the domain of f(x), is said to be an analytic function, and most, if
not all, functions that we encounter within this course are analytic functions.

Notes:

8.8 Taylor Series
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Generally speaking, any function that one creates with elementary functions
(polynomials, exponentials, trigonometric functions, etc.) that is not piecewise
defined is probably analytic. For most functions, we assume the function is equal
to its Taylor series on the series’ interval of convergence and only use Theorem
77 when we suspect something may not work as expected.

We develop the Taylor series for one more important function, then give a
table of the Taylor series for a number of common functions.

Example 268 The Binomial Series
Find the Maclaurin series of f(x) = (1 + x), k # 0.

SOLUTION When k is a positive integer, the Maclaurin series is finite.
For instance, when k = 4, we have

f) = (14+x)*"=1+4dx+6x*+ 4 +x*.

The coefficients of x when k is a positive integer are known as the binomial co-
efficients, giving the series we are developing its name.

When k = 1/2, we have f(x) = v/1 + x. Knowing a series representation of
this function would give a useful way of approximating 1/1.3, for instance.

To develop the Maclaurin series for f(x) = (1 + x) for any value of k # 0,
we consider the derivatives of f evaluated at x = 0:

f) = (1 +x)" f(0) =1
(0 = k(1 +x)" £ (0) =k
F7(0) = k(k = 1)(1 4+ £(0) = k(k — 1)
(0 = k(k = 1) (k= 2)(1+x) £7(0) = k(k = 1)(k = 2)
FOX) =k(k—1) - (k— (n—1)) (1 +x)"" FO0) =k(k—1)--- (k- (n— 1))
Thus the Maclaurin series for f(x) = (1 + x) is
14kt k(k — 1) N k(k —1)(k — 2) N k(k—1)--- (k= (n—1)) L

2l 3l et ol
It is important to determine the interval of convergence of this series. With

k(k—1)---(k—(n—1))
n!

X

a, =

3

Notes:
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we apply the Ratio Test:

lim M: lim k(k—l)”-(k—n)xnﬂ k(k—]_)...(k_(n_l))xn
n—oo |a,,| n— o0 (n_|_1)! ol
. ‘kn
= lim %
n—oo n

= |xl.

The series converges absolutely when the limit of the Ratio Test is less than
1; therefore, we have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [—1,1]. When
—1 < k < 0, the interval of convergence is [—1,1). If k < —1, the interval of
convergence is (—1, 1).

We learned that Taylor polynomials offer a way of approximating a “difficult
to compute” function with a polynomial. Taylor series offer a way of exactly
representing a function with a series. One probably can see the use of a good
approximation; is there any use of representing a function exactly as a series?

While we should not overlook the mathematical beauty of Taylor series (which
is reason enough to study them), there are practical uses as well. They provide
a valuable tool for solving a variety of problems, including problems relating to
integration and differential equations.

In Key Idea 32 (on the following page) we give a table of the Taylor series
of a number of common functions. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new functions. This allows us to find the Taylor series of functions like
f(x) = €* cos x by knowing the Taylor series of e and cos x.

Before we investigate combining functions, consider the Taylor series for the
arctangent function (see Key Idea 32). Knowing that tan~!(1) = 7 /4, we can
use this series to approximate the value of 7:

E:tanfl(l):l—1+}—1+1—

4 3 5 7 9

RICHE
3 5 7 9

Unfortunately, this particular expansion of 7 converges very slowly. The first
100 terms approximate 7 as 3.13159, which is not particularly good.

Notes:
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Key Idea 32 Important Taylor Series Expansions
Function and Series First Few Terms ISl
Convergence
o0
X" X 3
X = —_— —_— —_— DY p—
e_;n! Ttx+ o+ 5+ (=00, 0)
9 2n+1 3 5 7
inx=S (L1 XX XL _
SInx= HZ:;( V' o ity oot (=00, 00)
> 2n 2 6
_ , X x> x* X
COSX—Z(_l) (2n)! I-Sita et (—00,00)
n=0
nx= 3 (- GV (-1 &V 1P (0,2]
N p n 2 3 ’
1 o]
1_X:Zx" T+x+24+x3+--- (-1,1)
n=0
2 k(k—1)--- (k—(n—1)) k(k —1)
k 2 _ a
(1+x) _nz:; o X' 14+kx+ TR (-1,1)
e 2n—+1 3 XS 7
X X X
tan~ix = —il)f — e A ~1.1
aanZ::o()ZnJrl X—3tg o7t =51

“Convergence at x = 41 depends on the value of k.

Theorem 78 Algebra of Power Series

o0 o0
Let f(x) = Z apx" and g(x) = Z bnx" converge absolutely for |x| < R, and let h(x) be continuous.
n=0 n=0

1. f(x) £g(x) = i(an + by)x"  for x| <R.

n=0

2. f(x)g(x) = <i a,,x”> (i b,,x"> = i (aobn + G1bp—1 + . .. apbo)X" for |x| < R.

n=0 n=0 n=0

3. f(h(x)) = > _an(h(x))" for|h(x)| <R.

n=0

Notes:
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Example 269 Combining Taylor series
Write out the first 3 terms of the Taylor Series for f(x) = €* cos x using Key Idea
32 and Theorem 78.

SOLUTION Key Idea 32 informs us that

x_q x* X g _ X2 Xt
e’ = +x+i+§+-~- and cosx = —5—1—5—1—---.

Applying Theorem 78, we find that

X — (1 x? X3 1 x2 x*
€" CosX = +x+i+§+-.- _E+E+... .

Distribute the right hand expression across the left:

_11x2x4 1xzx4 lexzx4
— _54_54_... X _i+a+... +E _54_54_...

x3 1 X2 Xt x4 1 X2 Xt

Distribute again and collect like terms.

1 2 ¥ X X
T3 T T3 e T
While this process is a bit tedious, it is much faster than evaluating all the nec-
essary derivatives of € cos x and computing the Taylor series directly.
Because the series for e and cos x both converge on (—oc, ), so does the
series expansion for e* cos x.

Example 270 Creating new Taylor series
Use Theorem 78 to create series for y = sin(x?) and y = In(y/x).

SOLUTION Given that

o]
X2 n+1 X3 XS X7

H — _ n — _ - e
sinx = _(~1) P A T TR

n=0 :

we simply substitute x? for x in the series, giving

e 2)2n+1 6 10 14
Ly n (X) o, x5 x X
o) = 2 oy = s e
n=0

Notes:
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Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(x?).

The Taylor expansion for In x given in Key Idea 32 is centered at x = 1, so we
will center the series for In(y/x) at x = 1 as well. With

oo

|nXZZ(_1)n+1@ — (X—l)— (X_zl)z + (X_31)3 e

n=1

we substitute /x for x to obtain
|n(\/)?) _ Z(_l)n-H (\/;(n_ 1)n _ (\/)‘(_1)_ (\/;(2_ 1) + (\/;(3_ 1)

n=1

While this is not strictly a power series, it is a series that allows us to study the
function In(y/x). Since the interval of convergence of In xis (0, 2], and the range
of v/x on (0, 4] is (0, 2], the interval of convergence of this series expansion of

In(v/x) is (0, 4].
Example 271 Using Taylor series to evaluate definite integrals

1
Use the Taylor series of e to evaluate / e dx.
0

SOLUTION We learned, when studying Numerical Integration, that e
does not have an antiderivative expressible in terms of elementary functions.
This means any definite integral of this function must have its value approxi-
mated, and not computed exactly.

We can quickly write out the Taylor series for e using the Taylor series of
e
> . n 2 3
x N~ XX
e _Zﬁ_1+x+2! +3 T
n=0
and so
> 2\n
—x (7X )
e =D
n=0
o0
-yt
n!
n=0
, XX
S TR T
Notes:



We use Theorem 75 to integrate:

E_XZdX—C—I—X—ﬁ—F x° _ X’ +...+(_1)"L+
N 3 5.20 7-3! (2n + 1)n!

This is the antiderivative of e"‘z; while we can write it out as a series, we can-
not write it out in terms of elementary functions. We can evaluate the definite

1
integral / e dx using this antiderivative; substituting 1 and 0 for x and sub-
0

tracting gives

/1 g 1 1+ 1 1 N 1
e IXx =1 — — —
0 3 5.21 7-31 9.4

Summing the 5 terms shown above give the approximation of 0.74749. Since
this is an alternating series, we can use the Alternating Series Approximation
Theorem, (Theorem 71), to determine how accurate this approximation is. The
next term of the seriesis 1/(11-5!) & 0.00075758. Thus we know our approxi-
mation is within 0.00075758 of the actual value of the integral. This is arguably
much less work than using Simpson’s Rule to approximate the value of the inte-
gral.

Example 272 Using Taylor series to solve differential equations

Solve the differential equation y’ = 2y in terms of a power series, and use the
theory of Taylor series to recognize the solution in terms of an elementary func-
tion.

SOLUTION We found the first 5 terms of the power series solution to
this differential equation in Example 258 in Section 8.6. These are:
1 5 4 5 8 4 16 2
dg = a, = a, = — = 3 == —— —= — g = = —.
0 9 1 ) 2 2 ) 3 2.3 37 4 2.3.4 3

We include the “unsimplified” expressions for the coefficients found in Example
258 as we are looking for a pattern. It can be shown that a, = 2" /n!. Thus the
solution, written as a power series, is

[e.9] n

‘ N

= (2x)"
o=y 2

n=0 " n=0

S

Using Key Idea 32 and Theorem 78, we recognize f(x) = e

o0 n o0 n
X 2x
ex _ § : er — 2 : ( )
n! n!
n=0 n=0

Notes:

8.8 Taylor Series
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Finding a pattern in the coefficients that match the series expansion of a
known function, such as those shown in Key Idea 32, can be difficult. What if
the coefficients in the previous example were given in their reduced form; how
could we still recover the function y = e??

Suppose that all we know is that

00:17 01:2, 02:27 as = as =

2
3’ 3
Definition 39 states that each term of the Taylor expansion of a function includes
an n!. This allows us to say that
b, 4 by 2 b

g3=-=—, and a;=—

=2 == _
@ 20 3 30 37 4l

for some values b,, b3 and by. Solving for these values, we see that b, = 4,
bz = 8 and by = 16. That is, we are recovering the pattern we had previously
seen, allowing us to write

oo oo b
) =D an =3 2
n=0 n=0
149 4, 85 16,
= +x+5x +§x +Ex 4

From here it is easier to recognize that the series is describing an exponential
function.

There are simpler, more direct ways of solving the differential equation y’ =
2y. We applied power series techniques to this equation to demonstrate its util-
ity, and went on to show how sometimes we are able to recover the solution in
terms of elementary functions using the theory of Taylor series. Most differen-
tial equations faced in real scientific and engineering situations are much more
complicated than this one, but power series can offer a valuable tool in finding,
or at least approximating, the solution.

Notes:



Exercises 8.8

Terms and Concepts

1. What is the difference between a Taylor polynomial and a
Taylor series?

2. What theorem must we use to show that a function is equal
to its Taylor series?

Problems

Key Idea 32 gives the n term of the Taylor series of common
functions. In Exercises 3 — 6, verify the formula given in the
Key Idea by finding the first few terms of the Taylor series of
the given function and identifying a pattern.

3. f(x) =€ c=0

4. f(x) =sinx; c=0

5 f(x) =1/(1—x); ¢c=0
6. fx) =tan"'x; c=0

In Exercises 7 — 12, find a formula for the n'" term of the Taylor
series of f(x), centered at c, by finding the coefficients of the
first few powers of x and looking for a pattern. (The formu-
las for several of these are found in Key Idea 32; show work
verifying these formula.)

7. f(x) =cosx; c=m7/2

8 flx)y=1/x; c=1

9. flx)y=e ¢c=0
10. f(x) =In(1+x); c=0
11. f(x) =x/(x+1); c=1
12. f(x) =sinx; c=m7/4

In Exercises 13 — 16, show that the Taylor series for f(x), as
given in Key Idea 32, is equal to f(x) by applying Theorem 77;
thatis, show lim R,(x) = 0.
n— o0
13. f(x) =
14. f(x) =sinx

15. f(x) =Inx
16. f(x) =

In Exercises 17 — 20, use the Taylor series given in Key Idea 32
to verify the given identity.

1/(1 — x) (show equality only on (—1,0))

17. cos(—x) = cosx
18. sin(—x) = —sinx
19. Z(sinx) = cosx
20. & (cosx) = —sinx

In Exercises 21 — 24, write out the first 5 terms of the Binomial
series with the given k-value.

21. k=1/2
22. k=—-1/2
23. k=1/3
24. k=4

In Exercises 25 — 30, use the Taylor series given in Key Idea 32
to create the Taylor series of the given functions.

25. f(x) = cos (xz)

26. f(x) =

27. f(x) = (2x +3)

28. f(x) =tan"* (x/2)

29. f(x) = €*sinx (only find the first 4 terms)

30. f(x) = (1+x)"?cosx (only find the first 4 terms)

In Exercises 31 — 32, approximate the value of the given def-
inite integral by using the first 4 nonzero terms of the inte-
grand’s Taylor series.

N
31. / sin (x*) dx
0
2

32. /W a cos (v/x) dx



21.

23.

25.

27.

29.

31.

33.
35.

Solutions to Odd Exercis

(a) R=1
(b) [-1,1]
(a) R=0
(b) x=0

(a) f'(x) =

anx" L

(b) / fx) dx =

(@ f'(x) =

(_17 1)

(_17 1)

(_21 2)

_ +1.
(b) /f o = C+Z(n+1)zn P [2.2)

( Zn 1 (71)n+1X2n+1.
(@ f'(x Z (2n — (241 7
(=00, 00)
2n+1
®) [ 0 x—c+Z ZH ; (—00,00)
1T+43x+ 232 + 23 + 2

14+x+x2+3+x4
0+x+40x% — 253 + 0x*

Section 8.7

1.

11.
13.

15.

17.

19.

21.

23.

25.

27.

The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

. p2(X) = 6 4 3x — 4x%.
() =1—x+ 33 -2

Cps(x) =x+x2+ 33 + It 4 LS

pa(x) = 25 + %2 4 2 4 2+ 1

pa(x) =x* = +x2 —x+1

p4(x):1+ (- 1+X)_’( 14x)2+ 15(_1+X) 123( 1+x)%

O & C S Gk e T Gt 50 M Gt .20
P = 5= 7 ~ i T oeva T oavE T
12002 72002

ps) = 12 -2 (2 (e 2 2
p3(x) = 3 + X + (1 +x)?

p3(x) =x — %; p3(0.1) = 0.09983. Error is bounded by
£ - 0.1* ~ £0.000004167.

p2(x) =3+ 2(=9+x) — 5 (—9 + %)% p2(10) = 3.16204.
The third derivative of f(x) = v/x is bounded on (8, 11) by 0.003.
Error is bounded by :l:(J 903 . 13 — 40.0005.

The nth derivative of f(x) = e*is bounded by 3 on intervals
containing 0 and 1. Thus [Rn(1)| < < 10+ whenn =7,
this is less than 0.0001.

+1)'

The nth derivative of f(x) = cos x is bounded by 1 onintervals
containing 0 and /3. Thus |Rp(7/3)| < (n+1)' (m/3)(n+D),
When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
usen = 6.

29. The n'" term is %x"
31. The n'" term is x".
33. The nth term is (—1)" *=2"
n
75 375 5, 1875 ,
35. 3+15x+—x + — —X
24
Section 8.8
1. ATaylor polynomial is a polynomial, containing a finite number of

11.

13.

. The n® derivative of 1/(1 — x) is f (" (x) =

terms. A Taylor series is a series, the summation of an infinite
number of terms.

. All derivatives of e¥ are ¥ which evaluate to 1 at x = 0.

The Taylor series starts 1 + x + %xz + %x3 + %x“ 4+

> x"
the Taylor series is Z =
n=

(M (1 —=x)"t,
which evaluates to n! at x = 0.

The Taylor series starts 1 +x + x2 +x3 + - - -;

o0
the Taylor series is Z X"
n=0

. The Taylor series starts

0—(x—m/2) + 0% + L(x — m/2)3 + Ox* — 35 (x — 7/2)%;
o _ 41
the Taylor series is Z(fl)"“'l &= m/2)™
— (2n+1)!
n=0
. fM(x) = (—=1)"e*; atx = 0, (M (0) = —1 when n is odd and

£(M(0) = 1 when nis even.
The Taylor series starts 1 — x + x — fx + -

n
the Taylor series is Z( 1)" —'
n=0

1
(_1)n+1 znnirl

f(n) (x) = (—1)"+1 (x+1)"+1' atx =1, f(n)( )=

The Taonr series starts

Tpdx—1)—3(x—124+L(x—1p3

16(

(x—1)

n+1
the Taylor series is Z( 1) nfi

n=0

Given a value x, the magnitude of the error term R (x) is bounded
by
max | f ("D (z

(n+1)!

|Ra(x)] < )| |X(n+1>|7

where z is between 0 and x.
Ifx > 0,thenz < xand f ("1 (z) = & < . If x < 0, then

x <z < 0andf(1)(z) = e? < 1. So given a fixed x value, let
M = max{e*, 1}; (" (z) < M. This allows us to state

+1
|Rn(x)] < mw ).

M
Foranyx, lim ——— |x("+1)| = 0. Thus by the Squeeze
n—oo (n+ 1)!

Theorem, we conclude that |lim R, (x) = 0 for all x, and hence
n— oo

for all x.

o n

X
é(:Z
n:On



15. Given a value x, the magnitude of the error term R, (x) is bounded

by

max |f @l
(n+1)!

where z is between 1 and x.

Note that |f (") (x)| = X,,’il.

We consider the cases when x > 1 and when x < 1 separately.

Ifx > 1,then1 < z < xand f("T1) (z) = Z,,’il < nl. Thus

[Ra(x)| < — 1))

n! (x — 1) +1
R <7 |x—1))| =T
R 09] < (n+1)!|(X " n+1
For a fixed x,
_ n+1
im XU
n—oo n+1

If0 < x < 1,thenx <z< landf("+D(z) = z",il < X,,"il.
Thus

n'/x

(n+1)!

+1
} x— 1)) = X! (1 — %)+,

|R,, ‘* n+1

Since 0 < x < 1,x"t! < 1and (1 — x)"*! < 1. We can then
extend the inequality from above to state

D I g—

Xn+1
[Ra)] < 7 (1= nt1

Asn — 00,1/(n+ 1) — 0. Thus by the Squeeze Theorem, we
conclude that lim R,(x) = 0 for all x, and hence
n—o0o

Inx = io:(*l)n+1 7()( 7’1)”

n=1

forall0 < x < 2.

17. Givencosx = » (—1)"——,
= (2n)!
oo (e o) 2n
cos(—x) = — n = = cos x, as all
(0= S -5
powers in the series are even.
el 2n+1
X
19. Givensinx = 1),
nZ:D( ) (2n+1)!

d ) d > N X2n+1
E(Sm) = i <Z(—1) @t )u) -

n=0
> . (2n 4+ 1)x*" n X
nz:%(fl) W = ;(f ) (2 3 = cosx. (The

summation still starts at n = 0 as there was no constant term in
the expansion of sin x).

21 14 X 2 4 x> 5x*
' 2 16 128
X 2 52 10x
2314 - — — -
3 81 243
[e @)
25. -
2 Z( o
n=0
oo
2 3 2n+1
27. Z(,l)"%.
= (2n+1)!
2 X
29, x4+ x4+ = - =
3 30
N N 6 10 14
31. sin(xz)dx::/ (xzfX—JrX—f X )dx:
o 0 120 5040
0.8877
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