December 3 MATH 1113 sec. 51 Fall 2018

Section 7.5: Trigonometric Equations

In this section, we wish to consider **conditional** equations involving trigonometric functions. Our goal will be to find a solution set.

Some examples of trigonometric equations include

$$2\cos(x)-1 = 0$$
, $\sin\theta\cos\theta + \sin\theta = 0$, $2\tan^2 x - \tan x - 1 = 0$,

$$\csc 2\theta = \sec 2\theta$$
, $\tan^2(3x) = 3$, and so forth.

We'll use trigonometric identities, our knowledge of some trig values, and inverse trigonometric functions as needed.

A General Observation

When solving more complicated trigonometric equations, we will try to rewrite the problem in the form of **one or more** equations that look like

One Trig Function = One Number

We typically determine solution(s) in one period, and then extend those solutions if required.

2/20

Solutions on an Indicated Interval

(a) Find all solutions of the equation $\sec^2(x) + \tan(x) = 1$ on the interval $0 < x < 2\pi$.

or tenx +1 =0 tanx = 0 ton x = -1 fan x = 0 reference angle is IT X=0 ~ X= T since ten # = 1 we need good II + IV $X = \frac{3\pi}{4}$ or $X = \frac{7\pi}{4}$

The solution set is $\left\{ 0, \pi, \frac{3\pi}{4}, \frac{7\pi}{4} \right\}$

Solutions on an Indicated Interval

(b) Find all solutions of the equation $\cos^2(2x) = \frac{1}{4}$ on the interval $0 < x < 2\pi$.

For
$$0 \le x \le 2\pi$$
, $2.0 \le 2x \le 2 \cdot (2\pi)$
 $0 \le 2x \le 4\pi$
This is 2 full rotations for $2x$

$$Cos^{2}(2x) = \frac{1}{4} \Rightarrow Cos(2x) = \frac{1}{2} \text{ or } Cos(2x) = \frac{1}{2}$$

The reference angle is 3.

$$2x = \frac{\pi}{3}$$
, $2x = \frac{5\pi}{3}$, $2x = \frac{3\pi}{3}$, $2x = \frac{11\pi}{3}$
 $x = \frac{\pi}{6}$, $x = \frac{5\pi}{6}$, $x = \frac{7\pi}{6}$, $x = \frac{11\pi}{6}$

$$C_{05}(2x) = \frac{1}{2}$$
 2 rotations for $2x$
 $2x = \frac{2\pi}{3}$, $2x = \frac{4\pi}{3}$, $2x = \frac{8\pi}{3}$, $2x = \frac{10\pi}{6}$
 $x = \frac{2\pi}{6}$, $x = \frac{4\pi}{6}$, $x = \frac{8\pi}{6}$, $x = \frac{10\pi}{6}$

The solution ext is

$$\left\{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{2\pi}{6}, \frac{4\pi}{6}, \frac{8\pi}{6}, \frac{10\pi}{6}\right\}$$

Solutions on an Indicated Interval

(c) Find all solutions of the equation $\sin^2(3x) + 3\sin(3x) - 4 = 0$ on the interval $0 < x < 2\pi$.

For
$$0 \in X < 2\pi$$
, $3.0 \in 3x < 3(2\pi)$
 $0 \in 3x < 6\pi$
(3 full rotations)

$$5 \cdot n^{2}(3x) + 35 \cdot n(3x) - 4 = 0$$

 $u^{2} + 3u - 4 = 0$
 $(u + 4)(u - 1) = 0$

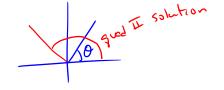
$$(\sin(3x) + 4)(\sin(3x) - 1) = 0$$

$$S_{in}(3x) + 4 = 0$$
 or $S_{in}(3x) - 1 = 0$
 $S_{in}(3x) = -4$ or $S_{in}(3x) = 1$

$$3x = \frac{5}{11}$$

$$3x = \frac{\pi}{2}$$
, $3x = \frac{\pi}{2}$, $3x = \frac{\pi}{2}$

$$X = \frac{\pi}{6}$$
, $X = \frac{5\pi}{6}$, $X = \frac{9\pi}{6}$


Using Inverse Trigonometric Functions

Find all solutions of the equation $4 \sin \theta = 1$. Express answers exactly in terms of the inverse sine.

There is a guadrant II onswer.

Lt 0 = Sin'(4), a diagran for 0

looks like

A good II angle with O as its reference

From the diagram this is

II - Sin'(4)

December 1, 2018 15 / 20

The two basic solutions are
$$Sin^{-1}\left(\frac{1}{4}\right)$$
 and $TI-Sin^{-1}\left(\frac{1}{4}\right)$

The solutions are

$$\theta = \sin^{-1}\left(\frac{1}{4}\right) + 2\pi n$$
 or $\theta = \pi - \sin^{-1}\left(\frac{1}{4}\right) + 2\pi n$ for any integer n