December 3 MATH 1113 sec. 52 Fall 2018

Section 7.5: Trigonometric Equations

In this section, we wish to consider conditional equations involving trigonometric functions. Our goal will be to find a solution set.

Some examples of trigonometric equations include
$2 \cos (x)-1=0, \quad \sin \theta \cos \theta+\sin \theta=0, \quad 2 \tan ^{2} x-\tan x-1=0$,

$$
\csc 2 \theta=\sec 2 \theta, \quad \tan ^{2}(3 x)=3, \quad \text { and so forth. }
$$

We'll use trigonometric identities, our knowledge of some trig values, and inverse trigonometric functions as needed.

A General Observation

When solving more complicated trigonometric equations, we will try to rewrite the problem in the form of one or more equations that look like

$$
\text { One Trig Function }=\text { One Number }
$$

We typically determine solution(s) in one period, and then extend those solutions if required.

Solutions on an Indicated Interval
(a) Find all solutions of the equation $\sec ^{2}(x)+\tan (x)=1$ on the interval $0 \leq x<2 \pi$.

$$
\begin{array}{ll}
\sec ^{2} x+\tan x=1 & \tan ^{2} x+1=\sec ^{2} x \\
\tan ^{2} x+1+\tan x=1 & \operatorname{sun} \operatorname{tract} 1 \\
\tan ^{2} x+\tan x=0 & \\
\tan x(\tan x+1)=0 &
\end{array}
$$

B) the zero product property

$$
\begin{array}{lll}
\tan x=0 & \text { or } & \tan x+1=0 \\
\tan x=0 & \text { or } & \tan x=-1
\end{array}
$$

$$
x=0 \text { or } x=\pi
$$

$\tan \frac{\pi}{4}=1, \frac{\pi}{4}$ is the retene angl $\tan x=-1$ in quad II and IV
we get 2 solutions

$$
x=\frac{3 \pi}{4} \text { or } x=\frac{7 \pi}{4}
$$

The solution set is

$$
\left\{0, \pi, \frac{3 \pi}{4}, \frac{7 \pi}{4}\right\}
$$

Solutions on an Indicated Interval
(b) Find all solutions of the equation $\cos ^{2}(2 x)=\frac{1}{4}$ on the interval $0 \leq x<2 \pi$.
weill solve for $2 x$ first, then divide by 2 .
For $0 \leq x<2 \pi, \quad 2 \cdot 0 \leq 2 x<2(2 \pi)$

$$
0 \leq 2 x<4 \pi
$$

So $2 x$ will be in 2 full rotations.

$$
\cos ^{2}(2 x)=\frac{1}{4} \Rightarrow \cos (2 x)=\frac{1}{2} \quad \text { or } \quad \cos (2 x)=\frac{-1}{2}
$$

The reference angle will be $\frac{\pi}{3}$ for all solutions $2 x$.
$\cos (2 x)=\frac{1}{2} \quad$ (solutions in 2 rotations, quod $\left.I+I V\right)$

$$
\begin{array}{ll}
2 x=\frac{\pi}{3}, & 2 x=\frac{5 \pi}{3}, \\
x=\frac{\pi}{6}, & x=\frac{7 \pi}{3},
\end{array} 2 x=\frac{11 \pi}{3}, \quad x=\frac{7 \pi}{6}, \quad x=\frac{11 \pi}{6}
$$

$\operatorname{Cos}(2 x)=\frac{-1}{2} \quad$ (2rotations, quads II and III)

$$
\begin{array}{llll}
2 x=\frac{2 \pi}{3}, & 2 x=\frac{4 \pi}{3}, & 2 x=\frac{8 \pi}{3}, & 2 x=\frac{10 \pi}{3} \\
x=\frac{2 \pi}{6}, & x=\frac{4 \pi}{6}, & x=\frac{8 \pi}{6}, & x=\frac{10 \pi}{6}
\end{array}
$$

The solution set is

$$
\left\{\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}, \frac{2 \pi}{6}, \frac{4 \pi}{6}, \frac{8 \pi}{6}, \frac{10 \pi}{6}\right\}
$$

Solutions on an Indicated Interval
(c) Find all solutions of the equation $\sin ^{2}(3 x)+3 \sin (3 x)-4=0$ on the interval $0 \leq x<2 \pi$.

$$
\text { If } 0 \leq x<2 \pi, \text { then } \begin{aligned}
3 \cdot 0 & \leq 3 x
\end{aligned} \quad<3(2 \pi)
$$

we went $3 x$ in 3 frill rotations

$$
\begin{gathered}
\sin ^{2}(3 x)+3 \sin (3 x)-4=0 \\
u^{2}+3 u-4=0 \\
(u+4)(u-1)=0
\end{gathered}
$$

$$
\begin{aligned}
& (\sin (3 x)+4)(\sin (3 x)-1)=0 \\
& \sin (3 x)+4=0 \quad \text { or } \quad \sin (3 x)-1=0 \\
& \sin (3 x)=-4 \quad \text { or } \quad \sin (3 x)=1
\end{aligned}
$$

$$
-1 \leq \sin \theta \leq 1
$$

$$
\text { for de red } \theta
$$

no solutions

In one notation, then is one solution

$$
3 x=\frac{\pi}{2}
$$

In 3 rot otions we get

$$
3 x=\frac{\pi}{2}, \quad 3 x=\frac{5 \pi}{2}, \quad 3 x=\frac{9 \pi}{2}
$$

$$
x=\frac{\pi}{6}, \quad x=\frac{5 \pi}{6}, \quad x=\frac{9 \pi}{6}
$$

The solution set is

$$
\left\{\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{9 \pi}{6}\right\}
$$

Using Inverse Trigonometric Functions
Find all solutions of the equation $4 \sin \theta=1$. Express answers exactly in terms of the inverse sine.

$$
4 \sin \theta=1 \Rightarrow \sin \theta=\frac{1}{4}
$$

Well get the solutions in one rotations then add $2 \pi n$ for integers n,

In ore rotation, then are 2 solutions. One is $\sin ^{-1}\left(\frac{1}{4}\right)$ a quadrant I answer

We seed to find the quodrout II solution. The second solution has $\operatorname{Sin}^{-1}\left(\frac{1}{4}\right)$ as its retene angle.

From the digrom, the quod II answer is $\pi-\sin ^{-1}\left(\frac{1}{4}\right)$

The basic solutions ane

$$
\sin ^{-1}\left(\frac{1}{4}\right) \text { and } \pi-\sin ^{-1}\left(\frac{1}{4}\right)
$$

All solutions ar given by

$$
\theta=\sin ^{-1}\left(\frac{1}{4}\right)+2 \pi n \text {, or }
$$

$\theta=\pi-\sin ^{-1}\left(\frac{1}{4}\right)+2 \pi n \quad$ for n on y integer

