Derivatives of Polynomials without Limits

Calculus I Project

The purpose of this project is to find a general formula for the derivative of a polynomial at a point without using a limit-hence without using the power rule obtained from the definition of the derivative. (You'll essentially derive the power rule in a new way!) This can be done for polynomials by using the property that the derivative at a point gives the slope of the tangent line there. And, because the tangent line approximates a function (at least very near the point of tangency), this approach will rest on the concept of a multiple root.

Recall that c is a root of a function f if $f(c)=0$. We know that if f happens to be a polynomial, then saying c is a root is the same as saying that $x-c$ is a factor of f. For example, 2 is a root of $f(x)=x^{2}-x-2$, and we can write $f(x)=(x-2)(x+1)$ and see that $x-2$ is a factor of f. In general, we can say that c is a root of the polynomial $f(x)$ provided $f(x)=(x-c) q(x)$ where $q(x)$ is a polynomial. We define a double root in the following way:

Definition: Let f be a polynomial. Then c is a double root of f provided $(x-c)^{2}$ is a factor of f. That is, if c is double root of f, then there exists a polynomial $q(x)$ such that ${ }^{1} f(x)=(x-c)^{2} q(x)$.

To proceed, we will use the fact that if $L(x)=m x+b$ is the tangent line to a polynomial $f(x)$ at some point $(c, f(c))$, then the difference

$$
f(x)-L(x) \approx 0 \quad \text { for } x \text { very close to } c .
$$

If we plotted the difference $f(x)-L(x)$, it should have a flat plot near c much like the vertex of a parabola. This is because c will be a double root of this difference (note that since f is a polynomial and L is a line, the difference $f-L$ is a polynomial.) Hence we can write $f(x)-L(x)=(x-c)^{2} q(x)$. This can be used to determine what the slope m of the tangent line L should be-and this we know to be $f^{\prime}(c)$! Consider the following example:

Example: Let $f(x)=x^{2}$ and consider the point $(-1,1)$. Let $L(x)=m x+b$ be the tangent line to the graph of f at this point (so $c=-1$). Now L passes through $(-1,1)$, so

$$
L(x)-1=m(x+1) \quad \Longrightarrow \quad L(x)=m(x+1)+1 .
$$

[^0]The difference

$$
\begin{aligned}
f(x)-L(x) & =x^{2}-[m(x+1)+1] \\
& =x^{2}-m(x+1)-1 \\
& =\left(x^{2}-1\right)-m(x+1) \\
& =(x+1)(x-1)-m(x+1)=(x+1)(x-1-m) .
\end{aligned}
$$

Okay, so -1 must be a double root of this difference. So the second factor $(x-1-m)$ must also be $(x+1)$. Solving for m, we get

$$
x-1-m=x+1 \quad \Longrightarrow \quad m=-2 .
$$

That is, the slope of the tangent line to the graph of $f(x)=x^{2}$ at the point where $x=-1$ is $m=-2$. Compare this to the power rule:

$$
f^{\prime}(x)=2 x \quad \Longrightarrow \quad f^{\prime}(-1)=2(-1)=-2 \quad \text { BAM }!
$$

Carry out the following activities.

A. Use the method above to determine the slope of the tangent line to the graph of $f(x)=x^{2}$ at the points

$$
c=0,1,3, \text { and }-5 .
$$

B. Obtain a generalization for the slope of the tangent line to the graph of $f(x)=x^{2}$ at any point $\left(c, c^{2}\right)$. (Don't just make a conjecture here, do the algebra.) Extend this to find the slope of the tangent line to the graph of $f(x)=A x^{2}$ at the point $\left(c, A c^{2}\right)$ where A is any nonzero constant.
C. Now play this game with the function $f(x)=A x^{3}$ where A is any nonzero constant. It might be helpful to start by taking the simple case $A=1$ so you're just dealing with $f(x)=x^{3}$. You can try a few specific values of c to get a handle on the algebra involved. Then find a general formula for the slope of the tangent line to the graph of f at any point $\left(c, A c^{3}\right)$.
D. Let n be any positive integer. Find a formula for the slope of the tangent line to the graph of $f(x)=A x^{n}$ at the point $\left(c, A c^{n}\right)$ using the same method. (Fortunately, there is a nice, well documented formulation for factoring $x-c$ out of the polynomial $x^{n}-c^{n}$. You can derive it yourself, or
find it in a book or online.)
E. Prove (as formally as you can) the following theorem:

Theorem 1: If c is a double root of the polynomials $p(x)$ and $q(x)$, then c is a double root of the polynomial $f(x)=A p(x)+B q(x)$ for any choice of constants A and B.

You may assume without proof (or prove it for a little extra fun) the theorem
Theorem 2: If m_{1} is the slope of the tangent line to the polynomial $p(x)$ at c and m_{2} is the slope of the tangent line to the polynomial $q(x)$ at c, then the slope of the tangent line to the polynomial $f(x)=A p(x)+B q(x)$ at the point c is $m=A m_{1}+B m_{2}$.
F. Combine the results above to find a formula for the slope of the tangent line to the polynomial

$$
f(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0} \quad \text { at the point } \quad(c, f(c)) .
$$

Conclude with some discussion that includes a demonstration-that is, pick a polynomial f and a value for c and demonstrate finding the equation of the tangent line using your formula. (Make f interesting. That is, don't pick a simple monomial, and choose one that is at least of degree 4.)

[^0]: ${ }^{1}$ Strictly speaking, we would impose the condition that $q(c) \neq 0$, but we will relax this condition here.

