Practice for Exam I MATH 2254 (Ritter)

Sections Covered: 6.1, 6.2*, 6.3*, 6.4*, 6.6, 6.8

This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. **Nothing else is intended or implied.**

(1) Find the derivative of each function.

(a)
$$y = \ln(4x^2 + \cos x)$$

(b)
$$y = e^{\sin^{-1} x^2}$$

(c)
$$y = \tan^{-1}(\sqrt{t})$$

(d)
$$y = x^2 \log_4(x)$$

(e)
$$y = x^{\cos x}$$

(2) Evaluate each integral.

(a)
$$\int_0^1 x e^{x^2} dx$$

(b)
$$\int \frac{1}{x^2 + 4} \, dx$$

(c)
$$\int_{2}^{4} \frac{1}{x \ln x} dx$$

(d)
$$\int 4^{\tan x} \sec^2 x \, dx$$

(e)
$$\int \frac{dy}{\sqrt{9-y^2}}$$

(f)
$$\int \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx$$

(3) Given $f(x) = x^2 - 4x - 5$ for $x \ge 2$. Find $(f^{-1})'(0)$. Note: do not find f^{-1} .

- (4) Find f^{-1} and show that $\left(f^{-1}\circ f\right)\left(x\right)=x$ where f(x)=5-4x.
- (5) Find the equation of the line tangent to the graph of $y = \tan^{-1} x^2$ at x = -1.
- (6) Find $\frac{dy}{dx}$ given

$$xy = e^y \ln(x)$$

- (7) Evaluate the limits. (If applying l'Hospital's rule, clearly state this.)
- (a) $\lim_{x \to 0} \frac{x^2}{1 \cos(x)}$
- $\text{(b)} \quad \lim_{t \to 0} \frac{3^t 5^t}{t}$
- (c) $\lim_{x \to \infty} \frac{\ln x}{x}$
- (d) $\lim_{x \to 1} \frac{x-1}{e^{x-1}}$
- (e) $\lim_{x \to 0} \tan^{-1} \left(-\frac{1}{x^2} \right)$