Practice for Exam II MATH 2254H Spring 2015

Sections Covered: 7.1, 7.2, 7.3, 7.4, 7.5, 7.8, 10.1, 10.2

This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied. Section 4.5 was traditional *u*-substitution, so it is included with the various integration techniques.

(1) Evaluate the given integrals using any applicable method.

(a)
$$\int x\sqrt{4x^2+6} \, dx$$

(b)
$$\int_e^{e^2} \frac{dy}{y \ln y}$$

(c)
$$\int \frac{dx}{x^2-1}$$

(d)
$$\int \frac{x^3}{\sqrt{x^2+1}} \, dx$$

(e)
$$\int \frac{x^2+7x+2}{(x^2+1)(x+3)} \, dx$$

(f)
$$\int_0^1 \sqrt{1-x^2} \, dx$$

(g)
$$\int_0^{\frac{\pi}{4}} \tan^3 x \sec^3 x \, dx$$

(h)
$$\int \sin^5 u \cos^3 u \, du$$

(2) Use a substitution and then integration by parts to evaluate

$$\int e^{\sqrt{3s+9}} \, ds$$

(3) Evaluate the integral. (Hint, a substitution gives rise to a proper rational integrand.)

$$\int \frac{3\sin\theta \,d\theta}{\cos^2\theta + \cos\theta - 2}$$

(4) Find the form of the partial fraction decomposition. (It is not necessary to find any of the coefficients A, B, etc.)

(a)
$$\frac{2x}{x^2 + 7x + 12}$$

(b)
$$\frac{x^2 + 2x - 1}{(x^2 - 2x + 1)(x^2 - 4)}$$

(c)
$$\frac{1}{(x+2)^3(x^2-1)^2(x^2+4)^3}$$

(5) Write the following as the sum of a polynomial and a proper rational function. Find a partial fraction decomposition for the resulting proper rational function.

$$\frac{x^4 + x^3 + 9x^2 + 8x - 11}{(x+1)(x^2+9)}$$

(6) Determine if the improper integral is convergent or divergent. Evaluate it if possible. Note: You may be able to justify concluding that an integral is convergent or divergent even if it is not possible to evaluate it.

(a)
$$\int_{0}^{1} \frac{\ln x}{x} dx$$

(b) $\int_{1}^{\infty} \frac{(\tan^{-1} x)^{2}}{x^{2} + 1} dx$
(c) $\int_{2}^{\infty} \frac{dx}{x^{2} - 1}$
(d) $\int_{-1}^{1} \cot x dx$
(e) $\int_{1}^{\infty} \frac{\tan^{-1} x}{x^{2}} dx$

(7) Find a Cartesian representation for the parametric curve. Give a rough sketch of the curve using arrows to show the orientation.

(a)
$$x = \cos(2t), \quad y = \cos t, \quad 0 \le t \le \frac{\pi}{2}$$

- (b) $x = \csc t, \quad y = \cot t, \quad 0 < t \le \frac{\pi}{2}$
- (c) $x = e^t$, $y = e^{3t}$, $-\infty < t \le 0$

(8) Find a parameterization of the straight line segment that starts at the point (0, 2) and ends at the point (4, 3).

(9) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. For which values of t is the curve concave upward.

$$x = t^2 + 1, \quad y = e^t - 1$$

(10) Find the points on the curve where the tangent is horizontal or vertical. $x = \sin \theta$, $y = \sin(2\theta)$.

(11) Find the area enclosed between the x-axis and the curve $x = e^t + 1$, $y = t - t^2$.

(12) Find the exact length of the curve $x = e^t + e^{-t}$, y = 5 - 2t, $0 \le t \le 3$.