Practice for Exam II MATH 2254H Spring 2015

Sections Covered: 7.1, 7.2, 7.3, 7.4, 7.5, 7.8, 10.1, 10.2
This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied. Section 4.5 was traditional u-substitution, so it is included with the various integration techniques.
(1) Evaluate the given integrals using any applicable method.
(a) $\int x \sqrt{4 x^{2}+6} d x$
(b) $\int_{e}^{e^{2}} \frac{d y}{y \ln y}$
(c) $\int \frac{d x}{x^{2}-1}$
(d) $\int \frac{x^{3}}{\sqrt{x^{2}+1}} d x$
(e) $\int \frac{x^{2}+7 x+2}{\left(x^{2}+1\right)(x+3)} d x$
(f) $\int_{0}^{1} \sqrt{1-x^{2}} d x$
(g) $\int_{0}^{\frac{\pi}{4}} \tan ^{3} x \sec ^{3} x d x$
(h) $\quad \int \sin ^{5} u \cos ^{3} u d u$
(2) Use a substitution and then integration by parts to evaluate
$\int e^{\sqrt{3 s+9}} d s$
(3) Evaluate the integral. (Hint, a substitution gives rise to a proper rational integrand.)
$\int \frac{3 \sin \theta d \theta}{\cos ^{2} \theta+\cos \theta-2}$
(4) Find the form of the partial fraction decomposition. (It is not necessary to find any of the coefficients A, B, etc.)
(a) $\frac{2 x}{x^{2}+7 x+12}$
(b) $\frac{x^{2}+2 x-1}{\left(x^{2}-2 x+1\right)\left(x^{2}-4\right)}$
(c) $\frac{1}{(x+2)^{3}\left(x^{2}-1\right)^{2}\left(x^{2}+4\right)^{3}}$
(5) Write the following as the sum of a polynomial and a proper rational function. Find a partial fraction decomposition for the resulting proper rational function.
$\frac{x^{4}+x^{3}+9 x^{2}+8 x-11}{(x+1)\left(x^{2}+9\right)}$
(6) Determine if the improper integral is convergent or divergent. Evaluate it if possible. Note: You may be able to justify concluding that an integral is convergent or divergent even if it is not possible to evaluate it.
(a) $\int_{0}^{1} \frac{\ln x}{x} d x$
(b) $\int_{1}^{\infty} \frac{\left(\tan ^{-1} x\right)^{2}}{x^{2}+1} d x$
(c) $\int_{2}^{\infty} \frac{d x}{x^{2}-1}$
(d) $\int_{-1}^{1} \cot x d x$
(e) $\int_{1}^{\infty} \frac{\tan ^{-1} x}{x^{2}} d x$
(7) Find a Cartesian representation for the parametric curve. Give a rough sketch of the curve using arrows to show the orientation.
(a) $\quad x=\cos (2 t), \quad y=\cos t, \quad 0 \leq t \leq \frac{\pi}{2}$
(b) $\quad x=\csc t, \quad y=\cot t, \quad 0<t \leq \frac{\pi}{2}$
(c) $\quad x=e^{t}, \quad y=e^{3 t}, \quad-\infty<t \leq 0$
(8) Find a parameterization of the straight line segment that starts at the point $(0,2)$ and ends at the point $(4,3)$.
(9) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$. For which values of t is the curve concave upward.

$$
x=t^{2}+1, \quad y=e^{t}-1
$$

(10) Find the points on the curve where the tangent is horizontal or vertical. $x=\sin \theta$, $y=\sin (2 \theta)$.
(11) Find the area enclosed between the x-axis and the curve $x=e^{t}+1, y=t-t^{2}$.
(12) Find the exact length of the curve $x=e^{t}+e^{-t}, y=5-2 t, 0 \leq t \leq 3$.

