
Practice for Exam IV MATH 2254H Spring 2015

Sections Covered: 11.2–11.9

This practice exam is intended to give you a rough idea of the types of problems you can expect

to encounter. Nothing else is intended or implied.

(1) Determine if the given series converges absolutely, converges conditionally, or diverges.
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Hint: root test
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(2) Find the radius and interval of convergence for the power series.
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(3) Find a power series whose interval of convergence is

(a) (1, 5), (b) [1, 5)

(c) (1, 5], (d) [1, 5]

(4) If k is a positive integer, find the radius of convergence of the power series
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(5) Find a power series representation for each function in powers of x (i.e. centered at zero).

Identify the radius of convergence.

(a) f(x) =
x
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(b) g(x) = ln(2+x), Hint: g(0) = ln(2) and g′(x) =
1
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.

(c) h(x) =
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, Hint: Look at f ′(x) from part (a).

(6) Given the power series representation tan−1(x) =
∞∑
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for |x| < 1, find a power

series representation for the indefinite integral∫
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x
dx, for 0 < x < 1.


