Exam I Review Questions: Math 2335 (Ritter)

Sections Covered: 1.1, 1.2, 2.2, 2.3, 3.1, 3.2, 3.3
This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) (1.1\& 1.2) Write the Taylor polynomial with the remaider term for
(a) $\quad f(x)=\sqrt{x} \quad$ centered at $a=4, \quad$ of order 3.
(b) $\quad f(x)=\tan ^{-1}(x) \quad$ centered at $a=1, \quad$ of order 1.
(2) (2.2) Rearrange the function being evaluated to aviod loss of significance errors. Use algebra and function identities as needed.
(a) $\quad f(x)=\ln (2+x)-\ln (x) \quad x$ very large
(b) $f(x)=\sqrt[3]{8+x^{2}}-2 \quad x \approx 0$
(c) $f(x)=\cos (\alpha)-\cos (\alpha+x) \quad x \approx 0$
(3) (2.3) Find the error and the relative error in the approximations $x_{A} \approx x_{T}$.
(a) $x_{T}=\sqrt{2}, x_{A}=1.414$,
(b) $\quad x_{T}=\ln 2, x_{A}=0.7$
(4) (2.3, This is from problem \#5 pg. 62.) In the following function evaluations $f\left(x_{A}\right)$, assume that the numbers x_{A} are correctly rounded to the number of digits shown. Bound the error $f\left(x_{T}\right)-f\left(x_{A}\right)$ and the relative error in $f\left(x_{A}\right)$.
(a) $\cos (1.473)$,
(b) $e^{2.653}$
(5) (3.1, Problem \#11 pg. 78) Let α be the smallest positive root of $f(x)=1-x+\sin x$. Find an interval $[a, b]$ containing α. Estimate the number of iterations needed to find α using the bisection method within an accuracy of 10^{-8}.
(6) ($3.2 \& 3.3$) Give Newton's method for finding $\sqrt[m]{a}$. That is, define an appropriate function whose root would be $\sqrt[m]{a}$, and set up the Newton's iteration. What would the iteration be for the Secant method?
(7) (3.2) Use the inequality for convergence $\left|\alpha-x_{0}\right|<\left|\frac{2 f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}\right|$ to find an interval for the initial guess x_{0} so that Newton's method will converge for $f(x)=\sec ^{-1} x-\frac{\pi}{3}$. Note, the root is $\alpha=2$, and you can assume that $x>0$.
(8) (3.3) Show that if the Secant method is used to try to find the root $\alpha=0$ of $f(x)=\sqrt[3]{x}$, that

$$
x_{n+1}=-\left(x_{n}^{2 / 3} x_{n-1}^{1 / 3}+x_{n}^{1 / 3} x_{n-1}^{2 / 3}\right) .
$$

Will the secant method converge for any choice of x_{0} and x_{1} both different from zero?
(9) (3.3) Construct an algorithm to approximate $\sqrt{7}$ using the secant method. That is, define an appropriate function, and determine the secant method iteration formula. Choose a pair of initial guesses x_{0} and x_{1} and find the next two terms x_{2} and x_{3} in a sequence of approximations.

