Exam I Review Questions: (with solutions) Math 2335 (Ritter)

Sections Covered: 1.1, 1.2, 2.2, 2.3, 3.1, 3.2, 3.3
This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) (1.1 \& 1.2) Write the Taylor polynomial with the remaider term for
(a) $\quad f(x)=\sqrt{x} \quad$ centered at $a=4, \quad$ of order 3.
$f(x)=2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}-\frac{(x-4)^{4}}{128 c^{7 / 2}}, \quad$ for some c between 4 and x.
(b) $\quad f(x)=\tan ^{-1}(x) \quad$ centered at $a=1, \quad$ of order 1.

$$
f(x)=\frac{\pi}{4}+\frac{1}{2}(x-1)-\frac{c(x-1)^{2}}{1+c^{2}} \quad \text { for some } c \text { between } 1 \text { and } x .
$$

(2) (2.2) Rearrange the function being evaluated to aviod loss of significance errors. Use algebra and function identities as needed.
(a) $f(x)=\ln (2+x)-\ln (x)=\ln \left(1+\frac{2}{x}\right) \quad x$ very large
(b) $f(x)=\sqrt[3]{8+x^{2}}-2=\frac{x^{2}}{\left(8+x^{2}\right)^{2 / 3}+2 \sqrt[3]{8+x^{2}}+4} \quad x \approx 0$
(c) $\quad f(x)=\cos (\alpha)-\cos (\alpha+x)=2 \cos \left(\alpha+\frac{x}{2}\right) \cos \left(\frac{x}{2}\right) \quad x \approx 0$
(3) (2.3) Find the error and the relative error in the approximations $x_{A} \approx x_{T}$.
(a) $x_{T}=\sqrt{2}, x_{A}=1.414$,
(b) $\quad x_{T}=\ln 2, x_{A}=0.7$
(a) $\operatorname{Err}\left(x_{A}\right)=0.0002136, \operatorname{Rel}\left(x_{A}\right)=0.0001510$
(b) $\operatorname{Err}\left(x_{A}\right)=-0.007, \operatorname{Rel}\left(x_{A}\right)=-0.01$
(4) (2.3, This is from problem \#5 pg. 62.) In the following function evaluations $f\left(x_{A}\right)$, assume that the numbers x_{A} are correctly rounded to the number of digits shown. Bound the error $f\left(x_{T}\right)-f\left(x_{A}\right)$ and the relative error in $f\left(x_{A}\right)$.
(a) $\cos (1.473)$,
(b) $e^{2.653}$
(a) $|E| \leq 0.0005 \sin (1.4735) \approx 0.000498$ and $\left|\operatorname{Rel}\left(f\left(x_{A}\right)\right)\right| \leq \sec (1.4735)|E| \approx 0.00512$
(b) $|E| \leq 0.0005 e^{2.6535} \approx 0.00710$ and $\left|\operatorname{Rel}\left(f\left(x_{A}\right)\right)\right| \leq e^{-2.6525}|E| \approx 0.00050$
(5) (3.1, Problem \#11 pg. 78) Let α be the smallest positive root of $f(x)=1-x+\sin x$. Find an interval $[a, b]$ containing α. Estimate the number of iterations needed to find α using the bisection method within an accuracy of 10^{-8}.

The number of iterations will depend on the interval chosen. $f(0)=1>0$ and $f(\pi)=1-\pi<$ 0 . For $[a, b]=[0, \pi]$, bisection requires 29 iterations.
(6) (3.2 \& 3.3) Give Newton's method for finding $\sqrt[m]{a}$. That is, define an appropriate function whose root would be $\sqrt[m]{a}$, and set up the Newton's iteration. What would the iteration be for the Secant method?

$$
\begin{aligned}
& f(x)=x^{m}-a, \quad \text { for Newton's method } \quad x_{n+1}=\frac{(m-1) x_{n}^{m}+a}{m x_{n}^{m-1}} \\
& \text { for the Secant method } \quad x_{n+1}=x_{n}-\left(x_{n}^{m}-a\right) \frac{x_{n}-x_{n-1}}{x_{n}^{m}-x_{n-1}^{m}}, \quad n \geq 1
\end{aligned}
$$

(7) (3.2) Use the inequality for convergence $\left|\alpha-x_{0}\right|<\left|\frac{2 f^{\prime}(\alpha)}{f^{\prime \prime}(\alpha)}\right|$ to find an interval for the initial guess x_{0} so that Newton's method will converge for $f(x)=\sec ^{-1} x-\frac{\pi}{3}$. Note, the root is $\alpha=2$, and you can assume that $x>0$.

$$
\left|2-x_{0}\right|<\frac{12}{7} \quad \Longrightarrow \quad \frac{2}{7}<x_{0}<\frac{26}{7}
$$

(8) (3.3) Show that if the Secant method is used to try to find the root $\alpha=0$ of $f(x)=\sqrt[3]{x}$, that

$$
x_{n+1}=-\left(x_{n}^{2 / 3} x_{n-1}^{1 / 3}+x_{n}^{1 / 3} x_{n-1}^{2 / 3}\right) .
$$

Will the secant method converge for any choice of x_{0} and x_{1} both different from zero?

Derive the formula for the secant method formula in general. It will converge. In fact, it will converge in one step if $x_{0}=-x_{1} \neq 0$.
(9) (3.3) Construct an algorithm to approximate $\sqrt{7}$ using the secant method. That is, define an appropriate function, and determine the secant method iteration formula. Choose a pair of initial guesses x_{0} and x_{1} and find the next two terms x_{2} and x_{3} in a sequence of approximations.

$$
f(x)=x^{2}-7, \quad x_{n+1}=\frac{x_{n} x_{n-1}+7}{x_{n}+x_{n-1}}
$$

Taking $x_{0}=2$ and $x_{1}=3$ given $x_{2}=\frac{13}{5}$ and $x_{3}=\frac{37}{14}$.

