Exam 1 Math 2254H sec. 015H

Spring 2015

Name:

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

\qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

INSTRUCTIONS: There are 10 problems worth 10 points each. No use of notes, books, or calculator is allowed. Illicit use of notes, a book, calculator, or any smart device will result in a grade of zero on this exam. Show all of your work on the paper provided to receive full credit.
(1) $f(x)=2-\log _{4}(x)$ Find the equation of the line tangent to the graph of f at its x intercept. Leave your final answer in the form $y=m x+b$.

$$
\begin{aligned}
& f(x)=0 \Rightarrow 2-\log _{4} x=0 \Rightarrow \log _{4} x=2 \Rightarrow x=4^{2}=16 \\
& f^{\prime}(x)=\frac{-1}{x \ln 4} \text { so } f^{\prime}(16)=\frac{-1}{16 \ln 4}
\end{aligned}
$$

The point is $(16,0)$, and the slope $n=\frac{-1}{16 \ln 4}$

$$
\begin{array}{r}
y=\frac{\frac{-1}{16 \ln 4}(x-16)}{y=\frac{-x}{16 \ln 4}+\frac{1}{\ln 4}}
\end{array}
$$

(2) Find $\frac{d y}{d x}$ where $y=x^{\tan ^{-1} x}$

$$
\ln y=\ln x^{\tan ^{-1} x}=\tan ^{-1} x \ln x
$$

$$
\begin{aligned}
\frac{1}{y} \frac{d y}{d x} & =\frac{\ln x}{1+x^{2}}+\frac{\tan ^{-1} x}{x} \\
\frac{d y}{d x} & =y\left(\frac{\ln x}{1+x^{2}}+\frac{\tan ^{-1} x}{x}\right) \\
& =x^{\tan ^{-1} x}\left(\frac{\ln x}{1+x^{2}}+\frac{\tan ^{-1} x}{x}\right)
\end{aligned}
$$

(3) Evaluate the definite integral.

$$
\begin{aligned}
& \int_{e}^{6} \frac{d x}{x \ln x} \\
& \text { Let } n=\ln x, \quad d u=\frac{1}{x} \partial x \\
& \text { when } x=e, u=1 \\
& x=6, \quad u=\ln 6 \\
& =\int_{1}^{\ln 6} \frac{d n}{n} \\
& =\ln \ln | |_{1}^{\ln 6}=\ln |\ln 6|-\ln |1| \\
& =\ln (\ln 6)
\end{aligned}
$$

(4) Evaluate the limit (m and n are constant).

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos (m x)-\cos (n x)}{x^{2}}=\frac{1-1 "}{0}=\frac{0^{\prime \prime}}{0} \\
&=\lim _{x \rightarrow 0} \frac{-m \sin (m x)+n \sin (n x)}{2 x}=\frac{0^{\prime \prime}}{0} \text { use } l^{\prime \prime} \text { use sita's lie } \\
&=\lim _{x \rightarrow 0}-m^{2} \frac{\cos (m x)+n^{2} \cos (n x)}{2}=\frac{-m^{2}+n^{2}}{2} \\
&=\frac{n^{2}-m^{2}}{2}
\end{aligned}
$$

(5) Evaluate the indefinite integral.

$$
\begin{aligned}
& \int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x \\
&=\int \frac{d u}{\sqrt{1-u^{2}}}=\sin ^{-1} u+C \\
&=\sin ^{-1} e^{x}+C
\end{aligned}
$$

(6) Evaluate the indefinite integral.

$$
\int x \csc ^{2} x d x \quad \begin{array}{ll}
\text { B2 parts: } & d=x=d x \\
=-x \cot x+\int \cot x d x & d v=-\cot x \\
=-x \cot x+\ln |\sin x|+C &
\end{array}
$$

(7) Evaluate the indefinite integral.

$$
\begin{aligned}
& \int \sec ^{4} x \cot x d x=\int \frac{\sec ^{2} x \sec ^{2} x}{\tan x} d x \\
& =\int \frac{\left(\tan ^{2} x+1\right)}{\tan x} \sec ^{2} x d x \\
& u=\tan x, d u=\sec ^{2} x \partial x \\
& =\int\left(\tan x+\frac{1}{\tan x}\right) \sec ^{2} x d x \\
& =\int\left(u+\frac{1}{n}\right) d u=\frac{u^{2}}{2}+\ln |u|+C \\
& =\frac{\tan ^{2} x}{2}+\ln |\tan x|+C
\end{aligned}
$$

(8) The function $f(x)=\int_{2}^{\sqrt{x}} 2^{t^{2}} d t$ is one-to-one with inverse function f^{-1}. Find the equation of the line tangent to the graph of $f^{-1}(x)$ at its y-intercep t-i.e. at the point $\left(0, f^{-1}(0)\right)$.

$$
\begin{aligned}
& 0=\int_{2}^{\sqrt{x}} 2^{t^{2}} d t \Rightarrow \sqrt{x}=2 \Rightarrow x=4, \quad f^{-1}(0)=4 \\
& f^{\prime}(x)=2^{(\sqrt{x})^{2}} \cdot \frac{1}{2 \sqrt{x}}=\frac{2^{x}}{2 \sqrt{x}}, f^{\prime}(4)=\frac{2^{4}}{2 \sqrt{4}}=\frac{16}{4}=4
\end{aligned}
$$

The point is $(0,4)$, and the slope is $m=\left(f^{-1}\right)^{\prime}(0)=\frac{1}{4}$

$$
\begin{array}{r}
y-4=\frac{1}{4}(x-0) \\
y=\frac{1}{4} x+4
\end{array}
$$

(9) Evaluate the definite integral

$$
\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}
$$

$$
\begin{aligned}
x^{2}+2 x+5 & =\left(x^{2}+2 x+1\right)+4 \\
& =(x+1)^{2}+2^{2}
\end{aligned}
$$

$$
=\int_{-1}^{1} \frac{d x}{2^{2}+(x+1)^{2}}
$$

$$
u=x+1, \quad d u=d x
$$

$$
\text { who- } x=-1, \quad u=0
$$

$$
x=1, \quad u=2
$$

$$
\begin{aligned}
=\int_{0}^{2} \frac{d u}{2^{2}+u^{2}} & =\left.\frac{1}{2} \tan ^{-1}\left(\frac{u}{2}\right)\right|_{0} ^{2} \\
& =\frac{1}{2} \tan ^{-1}(1)-\frac{1}{2} \tan ^{-1}(0)=\frac{1}{2}\left(\frac{\pi}{4}\right)=\frac{\pi}{8}
\end{aligned}
$$

(10) Evaluate the limit.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}}(4 x+1)^{\cot (2 x)}=1^{\infty}, \ln (4 x+1)^{\cot (2 x)}=\cot (2 x) \ln (4 x+1) \\
& \lim _{x \rightarrow 0^{+}} \cot (2 x) \ln (4 x+1)=\lim _{x \rightarrow 0^{+}} \frac{\ln (4 x+1)}{\tan (2 x)}=\frac{0^{\prime \prime}}{0} \quad \text { Use l'H rule } \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{4}{4 x+1}}{2 \sec ^{2}(2 x)}=\frac{\frac{4}{1}}{2(1)}=2
\end{aligned}
$$

Hence $\lim _{x \rightarrow 0^{+}}(4 x+1)^{\cot (2 x)}=e^{2}$

