Exam 1 Math 2254 sec. 001

Summer 2015

Name: Solutions

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

INSTRUCTIONS: There are 10 problems worth 10 points each. No use of notes, books, or calculator is allowed. Illicit use of notes, a book, calculator, or any smart device will result in a grade of zero on this exam and may result in a formal allegation of academic misconduct. Show all of your work on the paper provided to receive full credit.
(1) Find the most general antiderivative of each function.
(a)

$$
\begin{aligned}
f(x)=\sqrt[4]{x}+\frac{1}{\sqrt{x}} & =x^{1 / 4}+x^{-1 / 2} \\
F(x) & =\frac{x^{5 / 4}}{5 / 4}+\frac{x^{1 / 2}}{1 / 2}+C \\
& =\frac{4}{5} x^{5 / 4}+2 \sqrt{x}+C
\end{aligned}
$$

(b) $f(x)=\frac{2}{x}-\frac{1}{\sqrt{1-x^{2}}}$

$$
F(x)=2 \ln |x|-\sin ^{-1} x+C
$$

(2) Evaluate each derivative using the Fundamental Theorem of Calculus (part 1).
(a) $\frac{d}{d x}\left[\int_{1}^{x^{2}} \ln (t+1) d t\right]=\ln \left(x^{2}+1\right)(2 x)$

$$
=2 x \ln \left(x^{2}+1\right)
$$

(b) $\frac{d}{d x}\left[\int_{x}^{7} e^{-t^{3}} d t\right]=\frac{d}{d t}\left[-\int_{7}^{x} e^{-t^{3}} d t\right]=-e^{-x^{3}}$
(3) Suppose

$$
\int_{0}^{1} f(x) d x=-2, \quad \int_{0}^{5} f(x) d x=4, \quad \int_{0}^{1} g(x) d x=1, \quad \text { and } \quad \int_{0}^{5} g(x) d x=7
$$

(a) Evaluate $\int_{1}^{5} f(x) d x=\int_{0}^{5} f(x) d x-\int_{0} f(x) d x=4-(-2)=6$
(b) Evaluate $\int_{0}^{1}[2 f(x)-3 g(x)] d x=2 \int_{0}^{1} f(x) d x-3 \int_{0}^{1} g(x) d x$

$$
\begin{aligned}
& =2(-2)-3(1) \\
& =-4-3=-7
\end{aligned}
$$

(4) Recall the identity $1+\tan ^{2} \theta=\sec ^{2} \theta$. Evaluate the indefinite integral.

$$
\begin{aligned}
\int \tan ^{2} \theta d \theta & =\int\left(\sec ^{2} \theta-1\right) d \theta \\
& =\int \sec ^{2} \theta d \theta-\int d \theta \\
& =\tan \theta-\theta+C
\end{aligned}
$$

(5) Evaluate the definite integral using any method.

$$
\begin{aligned}
\int_{1}^{2} \frac{2 x^{2}+1}{x} d x & =\int_{1}^{2} \frac{2 x^{2}}{x} d x+\int_{1}^{2} \frac{1}{x} d x \\
& =\int_{1}^{2} 2 x d x+\int_{1}^{2} \frac{1}{x} d x \\
& =\left.x^{2}\right|_{1} ^{2}+\left.\ln |x|\right|_{1} ^{2} \\
& =4-1+\ln 2-\ln 1 \\
& =3+\ln 2
\end{aligned}
$$

(6) Evaluate the definite integral using any method.

$$
\begin{aligned}
& \int_{0}^{\ln 2} e^{x} \sqrt{1+e^{x}} d x \quad \text { Lat } u=1+e^{x} \quad d u=e^{x} d x \\
& \text { when } x=0, u=1+e^{0}=2 \\
& x=\ln 2, u=1+e^{\ln 2}=1+2=3 \\
& =\int_{2}^{3} \sqrt{n} d u \\
& =\int_{2}^{3} u^{1 / 2} d u=\left.\frac{u^{3 / 2}}{3 / 2}\right|_{2} ^{3}=\left.\frac{2}{3} \omega^{3 / 2}\right|_{2} ^{3} \\
& =\frac{2}{3}(3)^{3 / 2}-\frac{2}{3}(2)^{3 / 2}
\end{aligned}
$$

(7) Find the area of the region bounded between the curves $y=10-x^{2}$ and $y=1$.
Atop $\quad \Rightarrow \quad$ Intersections: $10-x^{2}=1 \Rightarrow a=x^{2}$

$$
\begin{aligned}
& =\int_{-3}^{3}\left(9-x^{2}\right) d x \\
& =2 \int_{0}^{3}\left(9-x^{2}\right) d x \\
& =2\left[9 x-\frac{x^{3}}{3}\right]_{0}^{3}=2\left[9 \cdot 3-\frac{3^{3}}{3}\right] \\
& =2[27-9]=2(18)=36
\end{aligned}
$$

(8) Determine if each statement is True or False. Assume f is integrable, and indicate your conclusion with T or F in the blank provided.
(a) $\int_{a}^{b} 2 f(x) d x=\left(\int_{a}^{b} 2 d x\right)\left(\int_{a}^{b} f(x) d x\right)$

(b) $\int_{a}^{b}(f(x)+2) d x=\int_{a}^{b} f(x) d x+2(b-a)$ \qquad
(c) $\int_{a}^{b} 2 x f\left(x^{2}\right) d x=\int_{a^{2}}^{b^{2}} f(u) d u$ \qquad
(9) Solve the differential equation subject to the given initial condition.

$$
\begin{aligned}
& \frac{d y}{d t}=x e^{x^{2}}, \quad y(0)=0 \\
& y=\int x e^{x^{2}} d x \quad \text { Let } u=x^{2} \quad d u=2 x d x \Rightarrow \frac{1}{2} d u=x d x \\
&=\frac{1}{2} \int e^{u} d u=\frac{1}{2} e^{u}+C \quad y=\frac{1}{2} e^{x^{2}}+C \\
& y(x)=\frac{1}{2} e^{x^{2}}+C, \quad y(0)=\frac{1}{2} e^{0^{2}}+C=0 \\
& y=\frac{1}{2} e^{x^{2}}-\frac{1}{2}
\end{aligned}
$$

(10) Evaluate the indefinite integral using the given substitution.

$$
\begin{aligned}
& \int \frac{x}{x+1} d x, \text { let } u=1+x \quad d u=d x, \quad x=u-1 \\
= & \int \frac{u-1}{u} d u \\
= & \int\left(\frac{u}{u}-\frac{1}{u}\right) d u \\
= & =u\left(1-\frac{1}{u}\right) d u \\
& =x+1-\ln |u|+C
\end{aligned}
$$

